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Neural networks

Any feedforward neural network with an activation function σ gives rise to

fθ : x 7→ gL ◦ σ ◦ gL−1 . . . σ ◦ g1(x)

where each layer has linear map gℓ : y 7→ Wℓy with parameter θℓ = Wℓ.

The dimension of the input space n0 and
the layer widths nℓ determine the
network’s architecture.

For a dataset X = [x1, x2, . . . , xm] and unknown parameters θ we are
interested in describing the constraints between the coordinates of the
array of model outputs FX (θ) = [fθ(x1), fθ(x2), . . . , fθ(xm)].
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ReLU networks
A ReLU network is given by the activation function

σ : y = (y1, . . . , ynℓ) 7→ (max{0, y1}, . . . ,max{0, ynℓ})
at each layer of the neural network.

this makes fθ(x) piece-wise linear
▶ natural subdivision of the input space into regions
▶ fθ(x) is a linear function of x in each region

now consider multiple data points X = [x1, . . . , xm]
▶ this subdivision extends to the parameter space
▶ FX (θ) is multi-linear in θ in each activation region

input space parameter space
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Fixed data vs. fixed parameters

Network Outputs

Parameter Space

Network Outputs

Input Space

Fixed Input Data Fixed Parameters

n0 n1 n2 n3 X = [x1, x2]

A1 = [(1, 1, 0), (1, 0)]

A2 = [(0, 1, 1), (1, 1)]
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The main question

Problem

Describe the equations and inequalities that define the image of FA
X (θ) as

the parameter θ varies over an arbitrary activation region A in the
parameter space.

Yulia Alexandr Constraining ReLU outputs July 21, 2025 5 / 21



Implicitization
Given a model, parametrized by

φ : θ = (θ1, . . . , θn) 7→
(
f1(θ), f2(θ), . . . fm(θ)

)
,

we are interested in describing the polynomials defining image(φ). This
process is called implicitization.

Example (The independence model.)
Parametrization:
(θ1, θ2) 7→

(
θ1θ2︸︷︷︸
p1

, θ1(1 − θ2)︸ ︷︷ ︸
p2

, (1 − θ1)θ2︸ ︷︷ ︸
p3

, (1 − θ1)(1 − θ2)︸ ︷︷ ︸
p4

)
.

Implicit ideal: I = ⟨p1p4 − p2p3, p1 + p2 + p3 + p4 − 1⟩.

The generators of the ideal I are called model invariants.
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Parametrization
The number of linear pieces over the input space can be enormous.
The linear pieces share parameters and are not independent.
We investigate the relationships between the linear pieces.
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Mathematical setup

Question: What constraints do the outputs of a ReLU network satisfy?
Let X = [x1, . . . , xm] define the activation region A = [a1, . . . , am].
Split X into blocks [X1, . . .Xk ] such where Xi contains data points
that follow the same activation pattern.
Consider the parametrization φA

X : Rp → RnL×m : θ 7→ FA
X (θ).

Within each block, this parametrization can be written θ 7→ Mi (θ)Xi ,
where M(θ) is a matrix dependent on the activation pattern and θ.
So, over all blocks, the parametrization is

φA
X : θ 7→ [M1(θ)X1 | M2(θ)X2 | · · · | Mk(θ)Xk ].

Define the ReLU output variety as im(φA
X ). Denote it by V A

X .

Question: What are the generators of IAX := I (V A
X )? Dimension? Degree?
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Single block
When all data points in X follow the same activation pattern A, the map is

φA
X : θ 7→ M(θ)X .

Example
Let n0 = n1 = n2 = 2 and let A = [1, 0]. Then for any X ∈ R2×m,

φA
X : (W (1),W (2)) 7→ M(θ)X =

(
w

(1)
11 w

(2)
11 w

(1)
12 w

(2)
11

w
(1)
11 w

(2)
21 w

(1)
12 w

(2)
21

)
[x1 . . . xm].

The polynomials defining the image are:
1 one quadratic polynomial induced by detM

2 linear polynomials induced by linear dependencies of X .

in hidden out
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Single block

Let r = rankM(θ) for generic θ.

Proposition (A.-Montúfar, 2025+)

The ideal IAX is generated by nL ·min{m − n0, 0} linear polynomials and( nL
r+1

)(min{n0,m}
r+1

)
homogeneous polynomials of degree r + 1.

linear polynomials → linear dependencies between data points in X

degree r + 1 polynomials → certain minors of MX , which do not
depend on the dataset X
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The pattern variety

We consider the parametrization

φA : θ 7→ [M1(θ) | M2(θ) | · · · | Mk(θ)].

Define the ReLU pattern variety to be im(φA).

For each i ∈ [k], we assume that:
|Xi | = n0,
all points in Xi follow the same activation pattern,
all points in Xi are linearly independent.

Proposition (A.-Montúfar, 2025+)

Any polynomial f ∈ JA gives rise to a unique polynomial g = ψ−1f ∈ IAX ,
where ψ is a linear change of coordinates dependent on X .

So, we can study the ideal JA of the pattern variety instead!
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Example: 2 blocks

Consider a general dataset X = [ x1, x2, x3, x4 ].
X1 = [x1, x2] follow the pattern (1, 0).
X2 = [x3, x4] follow the pattern (1, 1).

in hidden out

ReLU output variety: θ 7→ [M1(θ)X1 | M2(θ)X2] with θ = (W (1),W (2))

M1(θ) =
(

w
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)
,M2(θ) =

(
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.

ReLU pattern variety: θ 7→ [M1(θ) | M2(θ)] = (m1 m3 m5 m7
m2 m4 m6 m8 )

JA = ⟨det (m1 m3
m2 m4 )⟩, det

(
m1−m5 m3−m7
m2−m6 m4−m8

)
⟩.

The ideal IAX is obtained from JA in terms of fixed but arbitrary data X1,X2.
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Two blocks, shallow networks

Let |R1| = r1, |R2| = r2, |S | = s.
Let t = r1 + r2 − 2s.

Theorem (A.-Montúfar, 2025+)

The ideal JA contains:
1 (r1 + 1)-minors of M1;
2 (r2 + 1)-minors of M2;
3 (n1 + 1)-minors of [M1 | M2] and [MT

1 | MT
2 ];

4 (t + 1)-minors of M1 −M2.

Conjecture: no other polynomials are needed to generate the ideal.
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Sufficiency

Consider the map

Ma ×Mb ×Mc → Rn2×2n0 : (A,B,C ) 7→ [M1 = A+ C |M2 = B + C ]

where Mr = {X ∈ Rn2×n0 : rank(X ) ≤ r}.

Question: Given two matrices M1,M2 ∈ Rn2×n0 satisfying:
1 rankM1 ≤ a+ c ;
2 rankM2 ≤ b + c ;
3 rank[M1 | M2] and rank[MT

1 | MT
2 ] ≤ a+ b + c ;

4 rank(M1 −M2) ≤ a+ b,

can we find A,B,C such that:
M1 = A+ C and M2 = B + C ;
rankA ≤ a, rankB ≤ b, rankC ≤ c?
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Example: 3 blocks

48 cubics: 3-minors of M1, M2, and M3;
48 cubics: 3-minors of M1 −M2, M2 −M3, and M2 −M3;
120 quartics: 4-minors of [Mi | Mj ] and [MT

i | MT
j ];

40 quartics: 4-minors of [M1 −M2 | M2 −M3] and
[
M1 −M2
M2 −M3

]
;

2000 quintics: algebraically independent 5-minors of[
M1 M2

M3 M2

]
,

[
M1 M2

M3 M3

]
,

[
M2 M3

M1 M1

]
,

[
M2 M3

M1 M3

]
,

[
M3 M1

M2 M2

]
,

[
M3 M1

M2 M1

]
.
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Many blocks, shallow networks

Linear combinations:
Each Mi (θ) = W (2) diag(Ai )W

(1) is a sum of rank-one matrices.
For λ ∈ Zk ,

rank

(∑
i

λiMi (θ)

)
≤
∣∣∣∣∣supp

(∑
i

λiAi

)∣∣∣∣∣ .
Polynomial constraints from minors:

(| supp(
∑
i

λiAi )|+ 1)-minors ∈ JA.

Question: Which λ give rise to minimal generators?

Blocks of linear combinations...
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Shallow networks, dimension

Two blocks: If n0 ≥ n1 ≤ n2 then the ideal JA has the expected
dimension, namely

dim(Ma) + dim(Mb) + dim(Mc).

Many blocks: If n0 ≥ n1 ≤ n2 then the ideal JA has the expected
dimension.
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Two blocks, deep networks

The path network determined by R1 \ S has rank 2, even though all three
paths pass through the same neuron in the middle layer. Let

ra = rank of the path network on R1 \ S ;
rb = rank of the path network on R2 \ S ;
rc = rank of the fully connected network on S .

Let t = ra + rb.
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Deep networks

Two blocks:

Theorem (A.-Montúfar, 2025+)

The ideal JA contains:
1. (r1 + 1)-minors of M1;
2. (r2 + 1)-minors of M2;

3a. (nmin + 1)-minors of [M1 | M2] if Aℓ
1 = Aℓ

2 for all ℓ > ℓmin.
3b. (nmin + 1)-minors of [MT

1 | MT
2 ] if Aℓ

1 = Aℓ
2 for all ℓ < ℓmin.

4. (t + 1)-minors of M1 −M2.

Many blocks: Similar to shallow networks, except:
have to consider rank-1 matrices determined by paths;
get looser rank bounds.
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Example: 2 blocks, deep network

JA is generated by:
9 quadratics: 2-minors of M1 −M2;
10 cubics: 3 × 3 minors of [M1 | M2].
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Thank you!

Questions?
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