Moment varieties for mixtures of products

Yulia Alexandr (UC Berkeley) joint work with Joe Kileel and Bernd Sturmfels

International Symposium on Symbolic and Algebraic Computation 2023 Tromsø, Norway

The (nonparametric) set-up

Consider *n* independent random variables $X_1, X_2, ..., X_n$ on the line \mathbb{R} . *Assumptions:*

- * No assumptions about X_k , only that moments $\mu_{ki} = \mathbb{E}(X_k^i)$ exist.
- \star The moments μ_{ki} are unknowns.
- * The only equations we require are $\mu_{k0} = 1$ for k = 1, 2..., n.

We consider a random variable X on \mathbb{R}^n that is the product of these *n* arbitrary independent random variables on \mathbb{R} . By independence, we have

$$\mathbb{E}(X_1^{i_1}X_2^{i_2}\cdots X_n^{i_n}) = \mathbb{E}(X_1^{i_1})\cdot \mathbb{E}(X_2^{i_2})\cdots \mathbb{E}(X_n^{i_n}).$$

This leads us to the *moment variety* $\mathcal{M}_{n,d}$, which has parametrization

 $m_{i_1i_2\cdots i_n} = \mu_{1i_1}\mu_{2i_2}\cdots \mu_{ni_n}$ where $i_1, i_2, \dots, i_n \ge 0$ and $i_1 + i_2 + \dots + i_n = d$.

The image is a toric variety of dimension at most nd - 1 in $\mathbb{P}^{\binom{n+d-1}{d}-1}$.

Example

Consider $\mathcal{M}_{5,3}$ in \mathbb{P}^{34} . The solutions to $i_1 + i_2 + i_3 + i_4 + i_5 = 3$ can be grouped into three partitions: $\lambda = (1 \ 1 \ 1), \ \lambda = (2 \ 1), \ \lambda = (3)$. Consider the following three toric varieties of dimensions 4, 8, 4 respectively:

$$\mathcal{M}_{5,(111)} \subset \mathbb{P}^9 : m_{11100} = \mu_{11}\mu_{21}\mu_{31}, \dots, m_{00111} = \mu_{31}\mu_{41}\mu_{51}. \\ \mathcal{M}_{5,(21)} \subset \mathbb{P}^{19} : m_{21000} = \mu_{12}\mu_{21}, m_{12000} = \mu_{11}\mu_{22}, \dots, m_{00012} = \mu_{41}\mu_{52}. \\ \mathcal{M}_{5,(3)} = \mathbb{P}^4 : m_{30000} = \mu_{13}, m_{03000} = \mu_{23}, \dots, m_{00003} = \mu_{53}.$$

Combining these parametrizations yields the original variety.

We will also study $\mathcal{M}_{n,d}$ under projections $\mathbb{P}^{\binom{n+d-1}{d}-1} \longrightarrow \mathbb{P}^{|\mathcal{N}_{\lambda}|-1}$ for any partition λ of d with $\leq n$ parts. We denote these toric varieties by $\mathcal{M}_{n,\lambda}$.

Toric combinatorics

First, we are interested in studying the toric varieties $\mathcal{M}_{n,d}$ and $\mathcal{M}_{n,\lambda}$.

Familiar examples:

* For any *n*, consider the partition $\lambda = (1^d) = (1 \ 1 \dots 1)$ of d < n. Then $\mathcal{M}_{n,(1^d)}$ is the associated toric variety to the **hypersimplex**

$$\Delta(n,d) = \operatorname{conv} \{ e_{\ell_1} + e_{\ell_2} + \cdots + e_{\ell_d} : 1 \le \ell_1 < \ell_2 < \cdots < \ell_d \le n \}$$

It has dimension n-1 in $\mathbb{P}^{\binom{n}{d}-1}$.

* Consider the partition $\lambda = (n - 1, n - 2, ..., 2, 1)$. Then the moment variety $\mathcal{M}_{n,\lambda}$ is the toric variety of the **Birkhoff polytope**, which lives in $\mathbb{P}^{n!-1}$ and has dimension $(n - 1)^2$.

Toric results

Theorem (A., Kileel, Sturmfels)

The dimension of the moment variety $\mathcal{M}_{n,d}$ is min $\left\{ nd - 1, \binom{n+d-1}{d} - 1 \right\}$.

Given a partition λ of length *n*, let let $k_0 \ge k_1 \ge ... \ge k_s$ be multiplicities of the distinct parts in λ . We define

$$\nu = (\underbrace{s, \ldots, s}_{k_s}, \underbrace{s-1 \ldots, s-1}_{k_{s-1}}, \ldots, \underbrace{1, \ldots, 1}_{k_1}, \underbrace{0 \ldots, 0}_{k_0}).$$

to be the *reduction* of λ . Here s + 1 is the number of distinct parts of λ .

Ex: both (8,5,5,4) and (7,7,3,0) reduce to $\nu = (2,1,0,0)$, with s = 2. Ex: if $\lambda = (1^d)$, we recover the identification $\Delta(n,d)$ with $\Delta(n, n - d)$.

Theorem (A., Kileel, Sturmfels)

The moment variety $\mathcal{M}_{n,\lambda} = \mathcal{M}_{n,\nu}$ has dimension (n-1)s.

What about generators?

Example

Consider the variety $\mathcal{M}_{4,4}$ in \mathbb{P}^{34} . Its ideal is generated by 52 quadrics and 28 cubics. The subset of the generators which involves the twelve unknowns $m_{2110}, \ldots, m_{0112}$ does not suffice to cut out $\mathcal{M}_{4,(211)}$ in \mathbb{P}^{11} .

Building upon work of Yamaguchi, Ogawa, and Takemura *"Markov degree of the Birkhoff model"*:

Theorem (A., Kileel, Sturmfels)

For any partition λ , the ideal of $\mathcal{M}_{n,\lambda}$ is generated by quadrics and cubics.

The ideals for $\mathcal{M}_{n,d}$ are more complicated. We conjecture that there does not exist a uniform degree bound for their generators.

Mixtures

Now we consider the mixtures of r copies of our toric models. Algebraically, these are the secant varieties $\sigma_r(\mathcal{M}_{n,d})$ and $\sigma_r(\mathcal{M}_{n,\lambda})$. The first is parametrized by

$$m_{i_1i_2\cdots i_n} = \sum_{j=1}^r \mu_{1i_1}^{(j)} \mu_{2i_2}^{(j)} \cdots \mu_{ni_n}^{(j)} \text{ with } i_1, i_2, \dots, i_n \ge 0 \text{ and } i_1 + i_2 + \dots + i_n = d.$$

These varieties are no longer toric! What can we say about their dimensions, degrees, generators?

 \diamond Consider the secant variety $\sigma_2(\mathcal{M}_{5,2})$. The parametrization is given as

$$m_{20000} = \mu_{12}^{(1)} + \mu_{12}^{(2)}$$
, ..., $m_{11000} = \mu_{11}^{(1)} \mu_{21}^{(1)} + \mu_{11}^{(2)} \mu_{21}^{(2)}$,

Example (continued)

Note $\mathcal{M}_{5,2} = \mathcal{M}_{5,(2)} \star \mathcal{M}_{5,(11)} = \mathbb{P}^4 \star \mathcal{M}_{5,(11)}$, since

 m_{11} m_{15} m_{12} m_{13} m_{14} μ_{12} $\mu_{11}\mu_{21}$ $\mu_{11}\mu_{31}$ $\mu_{11}\mu_{41}$ $\mu_{11}\mu_{51}$ m_{12} m_{22} m_{23} m_{24} m_{25} $\mu_{11}\mu_{21}$ μ_{22} $\mu_{21}\mu_{31}$ $\mu_{21}\mu_{41}$ $\mu_{21}\mu_{51}$ m_{13} m_{23} m_{33} m_{34} m_{35} = $\mu_{11}\mu_{31}$ $\mu_{21}\mu_{31}$ μ_{32} $\mu_{31}\mu_{41}$ $\mu_{31}\mu_{51}$ m_{34} m_{AA} $\mu_{11}\mu_{41}$ $\mu_{21}\mu_{41}$ $\mu_{31}\mu_{41}$ $\mu_{41}\mu_{51}$ m_{14} m_{24} m_{45} μ_{42} m_{35} m_{55} $\mu_{11}\mu_{51}$ $\mu_{31}\mu_{51}$ μ_{52} m_{15} m_{25} m_{45} $\mu_{21}\mu_{51}$ $\mu_{41}\mu_{51}$

$$\sigma_2(\mathcal{M}_{5,2}) = \sigma_2\big(\mathbb{P}^4 \star \mathcal{M}_{5,(11)}\big) = \mathbb{P}^4 \star \boxed{\sigma_2(\mathcal{M}_{5,(11)})} \subset \mathbb{P}^4 \star \mathbb{P}^9 = \mathbb{P}^{14}.$$

The ideal of $\sigma_2(\mathcal{M}_{5,(11)})$ is principal, generated by the pentad

 $\begin{array}{l} m_{12}m_{13}m_{24}m_{35}m_{45}-m_{12}m_{13}m_{25}m_{34}m_{45}-m_{12}m_{14}m_{23}m_{35}m_{45}+m_{12}m_{14}m_{25}m_{34}m_{35}\\ +m_{12}m_{15}m_{23}m_{34}m_{45}-m_{12}m_{15}m_{24}m_{34}m_{35}+m_{13}m_{14}m_{23}m_{25}m_{45}-m_{13}m_{14}m_{24}m_{25}m_{35}\\ -m_{13}m_{15}m_{23}m_{24}m_{45}+m_{13}m_{15}m_{24}m_{25}m_{34}+m_{14}m_{15}m_{23}m_{24}m_{35}-m_{14}m_{15}m_{23}m_{25}m_{34}. \end{array}$

This is the factor analysis model $F_{5,2}$.

*Drton, Sturmfels, and Sullivant

8/14

Dimensions of mixtures

Proposition (A., Kileel, Sturmfels)

The dimension of the moment variety satisfies the upper bound

$$\dim(\sigma_r(\mathcal{M}_{n,d})) \leq \min\{ rnd - rn + n - 1, \binom{n+d-1}{d} - 1 \}.$$

Because $\sigma_r(\mathcal{M}_{n,d}) = \sigma_r(\mathcal{M}_{n,(d)} \star \widetilde{\mathcal{M}}_{n,d}) = \mathbb{P}^{n-1} \star \sigma_r(\widetilde{\mathcal{M}}_{n,d}).$

Theorem (A., Kileel, Sturmfels)

The dimension $\sigma_r(\mathcal{M}_{n,d})$ is bounded above by the optimal value of

maximize $c_1 + c_2 + \cdots + c_d - 1$ subject to $0 \leq c_i \leq nr$ for $i \in [d]$ and $\sum_{i \in S} c_i \leq \sum_{\lambda \cap S \neq \emptyset} |N_{\lambda}|$ for $S \subseteq [d]$.

The last sum ranges over partitions $\lambda \vdash d$ of length $\leq n$ having nonempty intersection with S.

Conjecture: this bound is tight for $d \ge 3!$

Implicitization

Solving the implicitization problem is difficult!

Consider the variety $\mathcal{M}_{6,(111)}$. Its ideal is given by the 2 \times 2 minors of

 m_{156} m_{256} \star m_{134} m_{135} m_{136} \star m_{234} m_{235} m_{236} \star \star m_{123} * m_{345} m_{346} m_{356} m_{124} m_{134} \star m_{145} m_{146} m_{234} \star m_{245} m_{246} \star m_{345} m_{346} * * m_{456} m_{125} m_{135} m_{145} \star m_{156} m_{235} m_{245} \star m_{256} m_{345} \star m_{356} * m_{456} * m_{126} m_{136} m_{146} m_{156} \star m_{236} m_{246} m_{256} \star m_{346} m_{356} * m_{456} * *

The ideal of $\sigma_2(\mathcal{M}_{6,(111)})$ is generated by 20 cubics and 12 quintics. The ideal of $\sigma_3(\mathcal{M}_{6,(111)})$ has no quadrics or cubics, but contains a unique quartic. Computations in **Julia** reveal:

$$\deg(\sigma_2(\mathcal{M}_{6,(111)})) = 465 \text{ and } \deg(\sigma_3(\mathcal{M}_{6,(111)})) = 80.$$

프 에 에 프 에 드 프

More implicitization

Proposition (A., Kileel, Sturmfels)

The variety $\sigma_2(\mathcal{M}_{5,3})$ has dimension 24 and degree 3225 in \mathbb{P}^{34} . Its prime ideal is generated by 313 polynomials, namely 10 cubics, 283 quintics, 10 sextics and 10 septics. These are obtained by elimination from the ideal of 3×3 minors of the 5×15 matrix

Γ	a_{23}	a_{24}	a_{25}	a_{34}	a_{35}	a_{45}	*	*	*	*	*	b_{21}	b_{31}	b_{41}	b_{51}	٦
	a_{13}	a_{14}	a_{15}	*	*	*	a_{34}	a_{35}	a_{45}	*	b_{12}	*	b_{32}	b_{42}	b_{52}	
	a_{12}	*	*	a_{14}	a_{15}	*	a_{24}	a_{25}	*	a_{45}	b_{13}	b_{23}	*	b_{43}	b_{53}	
	*	a_{12}	*	a_{13}	*	a_{15}	a_{23}	*	a_{25}	a_{35}	b_{14}	b_{24}	b_{34}	*	b_{54}	
L	*	*	a_{12}	*	a_{13}	a_{14}	*	a_{23}	a_{24}	a_{34}	b_{15}	b_{25}	b_{35}	b_{45}	*	
L	*	~	u_{12}	*	u_{13}	u_{14}	*	u_{23}	a_{24}	u_{34}	015	025	035	0_{45}	~	

Proposition (A., Kileel, Sturmfels)

The variety $\sigma_2(\mathcal{M}_{4,4})$ has dimension 27 and degree 8650 in \mathbb{P}^{34} . Its prime ideal has only three minimal generators in degrees at most six.

Finiteness up to symmetry

Our ideals satisfy natural inclusions

$$I(\sigma_r(\mathcal{M}_{n,\bullet})) \subset I(\sigma_r(\mathcal{M}_{n+1,\bullet})), \quad \text{where} \quad \bullet \in \{d,\lambda\},$$

by appending a zero to the indices of every coordinate: $m_{i_1i_2\cdots i_n} \mapsto m_{i_1i_2\cdots i_n0}$. Iterate these inclusions and let the big symmetric group act:

$$\langle S_n I(\sigma_r(\mathcal{M}_{n_0,\bullet})) \rangle \subseteq I(\sigma_r(\mathcal{M}_{n,\bullet})) \text{ for } n > n_0.$$

Ideal-theoretic finiteness means $\exists n_0$ such that equality holds for $n > n_0$.

Theorem (A., Kileel, Sturmfels)

Given any partition $\lambda \vdash d$ and integer $r \geq 1$, set-theoretic finiteness holds for the varieties $\sigma_r(\mathcal{M}_{n,d})$ and $\sigma_r(\mathcal{M}_{n,\lambda})$. Ideal-theoretic finiteness holds in the toric case r = 1.

Builds upon the results of Draisma and others.

Yulia Alexandr

12/14

Example

The ideal of the variety $\mathcal{M}_{n,(1^d)}$ is generated by quadrics. The indices occurring in each quadratic binomial are 1 in at most 2d of the n coordinates. Therefore, ideal-theoretic finiteness holds with $n_0 = 2d$. If $\lambda = (1 \ 1)$, then $n_0 = 4$. Indeed:

$$\begin{split} I(\mathcal{M}_{4,\lambda}) &= \langle m_{0101} m_{1010} - m_{0110} m_{1001}, m_{0011} m_{1100} - m_{0110} m_{1001} \rangle \\ I(\mathcal{M}_{5,\lambda}) &= \langle m_{01001} m_{10100} - m_{01100} m_{10001}, m_{00011} m_{10100} - m_{00110} m_{10001}, \\ m_{11000} m_{00101} - m_{01100} m_{10001}, m_{10010} m_{00101} - m_{00110} m_{10001}, \\ m_{10010} m_{01100} - m_{10100} m_{01010}, m_{00011} m_{01100} - m_{00101} m_{01010}, \\ m_{00110} m_{11000} - m_{10100} m_{01010}, m_{00011} m_{11000} - m_{10001} m_{01010}, \\ m_{01001} m_{10010} - m_{10001} m_{01010}, m_{00110} m_{01001} - m_{00101} m_{01010} \rangle \end{split}$$

Corollary

Fix a partition λ with e nonzero parts, and suppose that n increases. The toric varieties $\mathcal{M}_{n,\lambda}$ satisfy ideal-theoretic finiteness for some $n_0 \leq 3e$.

Yulia Alexandr

Thanks!

· • • • •	1 n n	lowo nd	
		IEXALIU	

・ロト ・四ト ・ヨト ・ヨト

Ξ.