Maximum information divergence from linear and toric models

Yulia Alexandr (UCLA) joint work with Serkan Hoșten

Math Machine Learning seminar MPI MIS + UCLA Febuary 1, 2024

Notation

• A probability simplex is defined as

 $\Delta_{n-1} = \{ (p_1, \ldots, p_n) : p_1 + \cdots + p_n = 1, p_i \ge 0 \text{ for } i \in [n] \}.$

• A statistical model is a subset of Δ_{n-1} .

- A variety is the set of solutions to a system of polynomial equations.
- An algebraic statistical model is a subset M = V ∩ Δ_{n-1} for some variety V ⊆ Cⁿ.

The log-likelihood function

Let $\mathcal{M} \subseteq \Delta_{n-1}$ be a statistical model.

For an empirical data point $u = (u_1, ..., u_n) \in \Delta_{n-1}$, the *log-likelihood* function with respect to u assuming distribution $p = (p_1, ..., p_n) \in \mathcal{M}$ is

$$\ell_u(p) = u_1 \log p_1 + u_2 \log p_2 + \cdots + u_n \log p_n.$$

Maximum likelihood estimation

Fix an algebraic statistical model $\mathcal{M}\subseteq \Delta_{n-1}$

• The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_u(p)$ over all points $p \in \mathcal{M}$.

Maximum likelihood estimation

Fix an algebraic statistical model $\mathcal{M}\subseteq \Delta_{n-1}$

• The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_u(p)$ over all points $p \in \mathcal{M}$.

Occupation Computing logarithmic Voronoi cells:

Given a point $q \in \mathcal{M}$, what is the set of all points $u \in \Delta_{n-1}$ that have q as a global maximum when optimizing the function $\ell_u(p)$ over \mathcal{M} ?

The set of all such elements $u \in \Delta_{n-1}$ is the *logarithmic Voronoi cell* at q.

Linear and toric models

Theorem (A.-Heaton)

If \mathcal{M} is a linear model or a toric model, the logarithmic Voronoi cell at any point $p \in \mathcal{M}$ is a polytope.

We will denote the *logarithmic Voronoi polytope* at $p \in \mathcal{M}$ by Q_p .

Example (The twisted cubic.)

The curve is given by $\theta \mapsto (\theta^3, 3\theta^2(1-\theta), 3\theta(1-\theta)^2, (1-\theta)^3).$

Maximum KL-divergence

For two distributions $p, q \in \Delta_{n-1}$, the Kullback-Leibler (KL) divergence is

$$D(p||q) = \sum_{i=1}^{n} p_i \log\left(rac{p_i}{q_i}
ight).$$

For fixed $u \in \Delta_{n-1}$ maximizing $\ell_u(p)$ = minimizing D(u||p) over $p \in \mathcal{M}$.

What is the maximum and the maximizers of $\max_{u \in \Delta_{n-1}} \min_{p \in \mathcal{M}} D(u||p)$?

In other words, which point in the simplex is the farthest to its MLE?

- $\bullet\,$ problem formulated by Ay '02 when ${\cal M}$ is a discrete exponential family
- many information-theoretic results by Ay, Matúš, Montúfar, Rauh, etc.
- bio-neural networks develop in such a way to maximize the mutual information between the input and output of each layer.

Maximum KL divergence

In this talk, $\ensuremath{\mathcal{M}}$ will be a linear or a toric model.

- Let $D_{\mathcal{M}}(u) := \min_{p \in \mathcal{M}} D(u \| p)$ be the divergence from u to \mathcal{M} .
- We study the maximum divergence D(M) := max_{u∈∆n-1} D_M(u) and the points which achieve D(M).
- For fixed q ∈ M, the function D(u||q) is strictly convex in u over Δ_{n-1}.
- Hence, the maximum of $D_{\mathcal{M}}(u)$ restricted to the logarithmic Voronoi polytope Q_q is achieved at a vertex of Q_q .

Main idea:

In order to compute $D(\mathcal{M})$ and its maximizers, we will systematically keep track of the vertices of Q_p as we vary p over the model \mathcal{M} .

Linear models

A *discrete linear model* is defined parametrically by linear polynomials in the parameters $\theta_1, \ldots, \theta_d$.

Theorem (A.)

Logarithmic Voronoi cells of all interior points in a linear model have the same combinatorial type.

< 47 ▶

Maximum divergence to linear models

- Let $\mathcal{M} = \{c Bx : x \in \Theta\}$ where B is $n \times d$ whose rows sum to 0 and the entries of c sum to 1.
- By a *co-circuit* of B we mean a nonzero z ∈ ℝⁿ of minimal support so that z^TB = 0.
- The vertices of the logarithmic Voronoi polytope at $q \in \mathcal{M}$ are in bijection with the positive co-circuits z of B such that $\sum_{i=1}^{n} z_i q_i = 1$: $V_z(q) = (z_1q_1, \ldots, z_nq_n)$.
- For a fixed co-circuit z of B, the information divergence $D(V_z(q), q) = \sum_{i=1}^n z_i \log(z_i)q_i$ is linear in $q \in \mathcal{M}$.

Theorem (A.-Hoșten)

The maximum divergence of a linear model \mathcal{M} is achieved at a vertex of the logarithmic Voronoi polytope Q_q where q itself is a vertex of \mathcal{M} .

Toric models (aka exponential families)

- Consider a *discrete* exponential family $\mathcal{E}_{\omega,A}$ in Δ_{n-1} .
- The matrix A has integer entries.

Let

$$A = \left(\begin{array}{rrrr} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \end{array}\right)$$

with $a_i \in \mathbb{N}^d$ and $\operatorname{rank}(A) = d + 1$.

• $X_{\omega,A}$ is the Zariski closure of $(\mathbb{C}^*)^d$ under the monomial map.

$$z\mapsto (\omega_1z^{a_1},\omega_2z^{a_2},\ldots,\omega_nz^{a_n}).$$

• The associated *toric model* is $\mathcal{M}_A = X_{\omega,A} \cap \Delta_{n-1}$. It is equal to $\overline{\mathcal{E}}_{\omega,A}$.

• Let $q \in \mathcal{M}_A$. The logarithmic Voronoi polytope at q is of the form

$$Q_b = \{p \in \Delta_{n-1} : Ap = Aq = b\}.$$

Critical points

A vertex v of Q_b is *complementary* if there exists a face F of Q_b such that $supp(F) = [n] \setminus supp(v)$.

Theorem (Ay '02, Matúš '07, A.-Hoșten '24+.)

Every critical point p of $D_{\mathcal{M}_A}$ is a complementary vertex of Q_q where q is the MLE of p. A complementary vertex v of Q_q with the complementary face F is a critical point if and only if the line passing through v and q intersects the relative interior of F.

The chamber complex

Let's study these vertices systematically!

Let $conv(A) = conv(a_1, ..., a_n)$. The *chamber complex* C_A of conv(A) is the common refinement of all triangulations of conv(A).

Theorem (A.-Hoșten)

Fix a chamber $C \in C_A$. As b varies in the relative interior of C, the support of each face of Q_b as well as the combinatorial type of Q_b does not change.

Let

and denote the columns of A by a, b, c, d, and e.

The chamber complex

Febuary 1, 2024

글 🕨 🔺 글 🕨

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Given a logarithmic Voronoi polytope Q_b where $b \in \text{conv}(A)$, we need to identify complementary vertices of Q_b and decide whether any of these vertices are critical points. These are potential maximizers of $D_{\mathcal{M}_A}$.

Proposition (A.-Hoșten)

Let v be a complementary vertex of Q_b with the complementary face F. Let $\mathcal{L}_{v,F}$ be the collection of the lines passing through v and each point on F. Then v is a critical point if and only if $\mathcal{L}_{v,F}$ intersects \mathcal{M}_A .

For each Q_b ...

To check whether a complementary vertex v of a *fixed* logarithmic Voronoi polytope Q_b is a critical point:

- Let F be the complementary face of dimension k and assume v_1, \ldots, v_{k+1} are vertices of F that are affinely independent.
- 2 Then $\overline{\mathcal{L}_{v,F}}$ is the image of the map

$$(s, t_1, \dots, t_{k+1}) \mapsto sv + (1-s)(t_1v_1 + \dots + t_{k+1}v_{k+1})$$

where $t_1 + ... + t_{k+1} = 1$

- To intersect $\overline{\mathcal{L}_{v,F}}$ with \mathcal{M}_A plug in the image into the binomial equations defining the toric variety X_A .
- **O** Note $\overline{\mathcal{L}_{v,F}}$ and X_A intersect in finitely many points.
- Sompute them using numerical algebraic geometry.
- O Checks if this finite set contains a point with positive coordinates.

イロン イボン イヨン イヨン 二日

General algorithm

- * Compute the equations of X_A .
- \star Compute the chamber complex \mathcal{C}_A .
- \star For each chamber C in C_A do:

- Let w_1, \ldots, w_m be the vertices of C, so $b = \sum_i r_i w_i$.
- Let (v(b), F(b)) be a complementary vertex-face pair in Q_b.
 The coordinates of v(b) and vertices of F(b) are linear functions of r_i.
- Solution Parametrize a general point w(b) on F(b) via $w(b) = \sum t_i v_i(b)$.
- The line segment between v(b) and w(b) is parametrized by sv(b) + (1 − s)w(b) where 0 ≤ s ≤ 1.
- Substitute the coordinates of sv(b) + (1 s)w(b) into the equations of X_A , check whether this system of equations has positive solutions.
- \star Locate the global maximizer(s) among these local maximizers contributed by each chamber C.

3

16/25

< □ > < 同 > < 回 > < 回 > < 回 >

Reducing chambers

Proposition (A.-Hoșten)

Fix a chamber C and $b \in C^{\circ}$.

- If C has dimension k where k + 1 > n/2, then Q_b does not contain complementary vertices.
- If (v, F) is a complementary vertex-face pair, where both v and F are contained in the same facet F' of Q_b, then v is not a critical point.
- If no two vertices of Q_b have disjoint supports, then the same is true for any chamber C' containing C.
- Suppose conv(A) is a simplicial polytope where each column of A is a vertex. Suppose C intersects the boundary as well as the interior of conv(A). Then Q_b does not contain complementary vertices.

Also, we can (and should) employ symmetries to deal with less chambers!

< □ > < 同 > < 回 > < 回 > < 回 >

Example (pentagon)

Febuary 1, 2024

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Example (pentagon)

The toric variety X_A is defined by the equations

$$p_2^2 p_4^2 - p_3^3 p_5 = p_1 p_3^3 - p_2^3 p_4 = p_1 p_4 - p_2 p_5 = 0.$$

Only need to consider the boundary edges of the pentagonal chamber!

- The edge between (3/2, 1) and (2, 1) has one complementary vertex/face pair (v, F).
- (v, F) have supports $\{a, d\}$ and $\{b, c, e\}$.
- The parametrization of the line segment between *v* and *F* is given by

$$(r,s) \mapsto \left(s(\frac{1}{6}r + \frac{1}{3}), (1-s)\frac{r}{2}, (1-s)\frac{1-r}{2}, s(-\frac{1}{6}r + \frac{2}{3}), \frac{1-s}{2} \right),$$

where we parametrized *b* on the edge by

r(3/2,1)+(1-r)(2,1).

• Plugging it into the equations, we get:

19/25

Pentagon continued

$$s^{2}r^{2} + 7s^{2}r - 8s^{2} - 18sr + 9r = 0$$

$$197s^{4}r - 194s^{4} - 1401s^{3}r - 3sr^{3} + 1014s^{3} + 4398s^{2}r + 246sr^{2} - 2094s^{2}$$

$$- 5837sr - 81r^{2} + 2s + 2349r = 0$$

$$885s^{4} - 31312s^{3}r - 294sr^{3} + 32392s^{3} + 179435s^{2}r + 17016sr^{2} - 117350s^{2}$$

$$- 295438sr - 6165r^{2} + 2560s + 129141r - 591 = 0.$$

- This is a zero-dimensional system that has 11 solutions (Bertini). Four are complex and seven are real.
- There is a unique real solution where 0 < r, s < 1, namely

r = 0.4702953126494577 and s = 0.4106301713351522.

• The corresponding KL-divergence at the vertices v and F are 0.890062259952966 and 0.528701425022976.

Pentagon continued

For each of the remaining four edges we also get a pair of critical vertices with corresponding KL-divergences

0.729916767214609 and 0.657681783609608 0.736523721240758 and 0.651574202843057 0.927851227501820 and 0.503192212618303 0.856820834934792 and 0.552532602066626.

The global maximizer is the vertex

v = (0, 0.6722451790633609, 0, 0, 0.3277548209366391)

It is a vertex of the polytope Q_b where b = (1.3277548209, 0.655509642) lies on the blue edge:

Example $(2 \times 3 \text{ independence})$

Consider the independence model of a binary and ternary random variables X and Y.

22 / 25

< □ > < /□ >

2×3 independence continued

- 109 chambers in the chamber complex!
- But conv(A) is highly symmetrical due to the action of S₂ × S₃ on the states of X and Y ⇒ only need to study one chamber in each orbit.
- After eliminating chambers, we are left with three edges e_1 , e_2 , and e_3 .
- Parameterize b on e_1 as r(1/2, 1/2, 0) + (1 r)(1/2, 0, 1/2).
- The only vertex-face pair we need to consider is the pair v = 1/2(1, 0, 0, 0, r, 1 r) and w = 1/2(0, r, 1 r, 1, 0, 0).
- The parametrization of the line between them gives rise to the single equation $(s-1)^2 s^2 = 0 \implies s = 1/2, 0 \le r \le 1$.
- Upon substituting s = 1/2 into the divergence function D(v || mle(v)), we get the constant value log 2.
- Therefore, the divergence at *every* point *b* of the edge *e*₁ is log 2.
- By symmetry, the same is true of e_2 and e_3 .
- The maximum divergence from this model is log 2 and there are infinitely many maximizers!

23 / 25

More in the paper...

- Maximum divergence from reducible hierarchical log-linear models.
 - decomposition theory of logarithmic Voronoi polytopes
 - study how to use this decomposition to obtain and bound information divergence to reducible models
- Maximum divergence from toric models of ML degree one:
 - Multinomial distributions revisited
 - Box model
 - Trapezoid model
 - Some three-dimensional models

Thanks!

· · ·				
· • • •	112 /		~ ~ ~	a d r
	па /	~ 1C	Aaii	

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Ξ.