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Notation

A probability simplex is defined as

∆n−1 = {(p1, . . . , pn) : p1 + · · ·+ pn = 1, pi ≥ 0 for i ∈ [n]}.

A statistical model is a subset of ∆n−1.
A variety is the set of solutions to a system of polynomial equations.
An algebraic statistical model is a subsetM = V ∩∆n−1 for some
variety V ⊆ Cn.
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The log-likelihood function
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LetM⊆ ∆n−1 be a statistical model.

For an empirical data point u = (u1, ..., un) ∈ ∆n−1, the log-likelihood
function with respect to u assuming distribution p = (p1, ..., pn) ∈M is

`u(p) = u1 log p1 + u2 log p2 + · · ·+ un log pn.
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Maximum likelihood estimation

Fix an algebraic statistical modelM⊆ ∆n−1

1 The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution u ∈ ∆n−1, which point p ∈M did
it most likely come from? In other words, we wish to maximize `u(p) over
all points p ∈M.

2 Computing logarithmic Voronoi cells:

Given a point q ∈M, what is the set of all points u ∈ ∆n−1 that have q
as a global maximum when optimizing the function `u(p) overM?

The set of all such elements u ∈ ∆n−1 is the logarithmic Voronoi cell at q.
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Linear and toric models

Theorem (A.-Heaton)
IfM is a linear model or a toric model, the logarithmic Voronoi cell at any
point p ∈M is a polytope.

We will denote the logarithmic Voronoi polytope at p ∈M by Qp.

Example (The twisted cubic.)

The curve is given by θ 7→
(
θ3, 3θ2(1− θ), 3θ(1− θ)2, (1− θ)3).
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Maximum KL-divergence

For two distributions p, q ∈ ∆n−1, the Kullback-Leibler (KL) divergence is

D(p||q) =
n∑

i=1

pi log

(
pi
qi

)
.

For fixed u ∈ ∆n−1 maximizing `u(p) = minimizing D(u||p) over p ∈M.

What is the maximum and the maximizers of max
u∈∆n−1

min
p∈M

D(u||p)?

In other words, which point in the simplex is the farthest to its MLE?
problem formulated by Ay ’02 whenM is a discrete exponential family
many information-theoretic results by Ay, Matúš, Montúfar, Rauh, etc.
bio-neural networks develop in such a way to maximize the mutual
information between the input and output of each layer.
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Maximum KL divergence

In this talk,M will be a linear or a toric model.
Let DM(u) := minp∈MD(u‖p) be the divergence from u toM.
We study the maximum divergence D(M) := maxu∈∆n−1 DM(u) and
the points which achieve D(M).
For fixed q ∈M, the function D(u‖q) is strictly convex in u
over ∆n−1.
Hence, the maximum of DM(u) restricted to the logarithmic Voronoi
polytope Qq is achieved at a vertex of Qq.

Main idea:
In order to compute D(M) and its maximizers, we will systematically keep
track of the vertices of Qp as we vary p over the modelM.
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Linear models

A discrete linear model is defined parametrically by linear polynomials in
the parameters θ1, . . . , θd .

Theorem (A.)
Logarithmic Voronoi cells of all interior points in a linear model have the
same combinatorial type.
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Maximum divergence to linear models

LetM = {c − Bx : x ∈ Θ} where B is n × d whose rows sum to 0
and the entries of c sum to 1.
By a co-circuit of B we mean a nonzero z ∈ Rn of minimal support so
that zTB = 0.
The vertices of the logarithmic Voronoi polytope at q ∈M are in
bijection with the positive co-circuits z of B such that

∑n
i=1 ziqi = 1:

Vz(q) = (z1q1, . . . , znqn).
For a fixed co-circuit z of B , the information divergence
D(Vz(q), q) =

∑n
i=1 zi log(zi )qi is linear in q ∈M.

Theorem (A.-Hoşten)
The maximum divergence of a linear modelM is achieved at a vertex of
the logarithmic Voronoi polytope Qq where q itself is a vertex ofM.
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Toric models (aka exponential families)

Consider a discrete exponential family Eω,A in ∆n−1.
The matrix A has integer entries.
Let

A =

(
1 1 · · · 1
a1 a2 · · · an

)
with ai ∈ Nd and rank(A) = d + 1.

Xω,A is the Zariski closure of (C∗)d under the monomial map.

z 7→ (ω1z
a1 , ω2z

a2 , . . . , ωnz
an).

The associated toric model isMA = Xω,A ∩∆n−1. It is equal to Eω,A.
Let q ∈MA. The logarithmic Voronoi polytope at q is of the form

Qb = {p ∈ ∆n−1 : Ap = Aq = b} .
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Critical points
A vertex v of Qb is complementary if there exists a face F of Qb such that
supp(F ) = [n] \ supp(v).

Theorem (Ay ’02, Matúš ’07, A.-Hoşten ’24+.)
Every critical point p of DMA

is a complementary vertex of Qq where q is
the MLE of p. A complementary vertex v of Qq with the complementary
face F is a critical point if and only if the line passing through v and q
intersects the relative interior of F .
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The chamber complex

Let’s study these vertices systematically!

Let conv(A) = conv(a1, . . . , an). The chamber complex CA of conv(A) is
the common refinement of all triangulations of conv(A).

Theorem (A.-Hoşten)
Fix a chamber C ∈ CA. As b varies in the relative interior of C , the support
of each face of Qb as well as the combinatorial type of Qb does not change.

Let

A =

 1 1 1 1 1
0 1 2 3 2
1 0 0 1 2

 ,

and denote the columns of A by a, b, c , d , and e.
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The chamber complex
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Given a logarithmic Voronoi polytope Qb where b ∈ conv(A), we need to
identify complementary vertices of Qb and decide whether any of these
vertices are critical points. These are potential maximizers of DMA

.

Proposition (A.-Hoşten)
Let v be a complementary vertex of Qb with the complementary face F .
Let Lv ,F be the collection of the lines passing through v and each point
on F . Then v is a critical point if and only if Lv ,F intersectsMA.
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For each Qb...

To check whether a complementary vertex v of a fixed logarithmic Voronoi
polytope Qb is a critical point:

1 Let F be the complementary face of dimension k and assume
v1, . . . , vk+1 are vertices of F that are affinely independent.

2 Then Lv ,F is the image of the map

(s, t1, . . . , tk+1) 7→ sv + (1− s)(t1v1 + · · ·+ tk+1vk+1)

where t1 + . . .+ tk+1 = 1
3 To intersect Lv ,F withMA plug in the image into the binomial

equations defining the toric variety XA.
4 Note Lv ,F and XA intersect in finitely many points.
5 Compute them using numerical algebraic geometry.
6 Checks if this finite set contains a point with positive coordinates.
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General algorithm

? Compute the equations of XA.
? Compute the chamber complex CA.
? For each chamber C in CA do:

1 Let w1, . . . ,wm be the vertices of C , so b =
∑

i riwi .
2 Let (v(b),F (b)) be a complementary vertex-face pair in Qb.

The coordinates of v(b) and vertices of F (b) are linear functions of ri .
3 Parametrize a general point w(b) on F (b) via w(b) =

∑
tivi (b).

4 The line segment between v(b) and w(b) is parametrized by
sv(b) + (1− s)w(b) where 0 ≤ s ≤ 1.

5 Substitute the coordinates of sv(b) + (1− s)w(b) into the equations
of XA, check whether this system of equations has positive solutions.

? Locate the global maximizer(s) among these local maximizers
contributed by each chamber C .
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Reducing chambers

Proposition (A.-Hoşten)
Fix a chamber C and b ∈ C ◦.

If C has dimension k where k + 1 > n/2, then Qb does not contain
complementary vertices.
If (v ,F ) is a complementary vertex-face pair, where both v and F are
contained in the same facet F ′ of Qb, then v is not a critical point.
If no two vertices of Qb have disjoint supports, then the same is true
for any chamber C ′ containing C .
Suppose conv(A) is a simplicial polytope where each column of A is a
vertex. Suppose C intersects the boundary as well as the interior of
conv(A). Then Qb does not contain complementary vertices.

Also, we can (and should) employ symmetries to deal with less chambers!
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Example (pentagon)
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Example (pentagon)

The toric variety XA is defined by the equations

p2
2p

2
4 − p3

3p5 = p1p
3
3 − p3

2p4 = p1p4 − p2p5 = 0.

Only need to consider the boundary edges of the pentagonal chamber!

The edge between (3/2, 1) and (2, 1) has one
complementary vertex/face pair (v ,F ).
(v ,F ) have supports {a, d} and {b, c , e}.
The parametrization of the line segment
between v and F is given by
(r,s) 7→(s( 1

6 r+ 1
3 ), (1−s) r2 , (1−s) 1−r

2 , s(− 1
6 r+ 2

3 ), 1−s
2 ),

where we parametrized b on the edge by
r(3/2,1)+(1−r)(2,1).
Plugging it into the equations, we get:
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Pentagon continued

s2r2 + 7s2r − 8s2 − 18sr + 9r = 0

197s4r − 194s4 − 1401s3r − 3sr3 + 1014s3 + 4398s2r + 246sr2 − 2094s2

− 5837sr − 81r2 + 2s + 2349r = 0

885s4 − 31312s3r − 294sr3 + 32392s3 + 179435s2r + 17016sr2 − 117350s2

− 295438sr − 6165r2 + 2560s + 129141r − 591 = 0.

This is a zero-dimensional system that has 11 solutions (Bertini). Four
are complex and seven are real.
There is a unique real solution where 0 < r , s < 1, namely

r = 0.4702953126494577 and s = 0.4106301713351522.

The corresponding KL-divergence at the vertices v and F are
0.890062259952966 and 0.528701425022976.
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Pentagon continued
For each of the remaining four edges we also get a pair of critical vertices
with corresponding KL-divergences

0.729916767214609 and 0.657681783609608

0.736523721240758 and 0.651574202843057

0.927851227501820 and 0.503192212618303

0.856820834934792 and 0.552532602066626.

The global maximizer is the vertex
v = (0, 0.6722451790633609, 0, 0, 0.3277548209366391)

It is a vertex of the polytope Qb where b = (1.3277548209, 0.655509642)
lies on the blue edge:
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Example (2× 3 independence)

Consider the independence model of a binary and ternary random variables
X and Y .

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 .
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2× 3 independence continued
109 chambers in the chamber complex!
But conv(A) is highly symmetrical due to the action of S2 × S3 on the
states of X and Y =⇒ only need to study one chamber in each orbit.
After eliminating chambers, we are left with three edges e1, e2, and e3.
Parameterize b on e1 as r(1/2, 1/2, 0) + (1− r)(1/2, 0, 1/2).
The only vertex-face pair we need to consider is the pair
v = 1/2(1, 0, 0, 0, r , 1− r) and w = 1/2(0, r , 1− r , 1, 0, 0).
The parametrization of the line between them gives rise to the single
equation (s − 1)2 − s2 = 0 =⇒ s = 1/2, 0 ≤ r ≤ 1.
Upon substituting s = 1/2 into the divergence function D(v‖mle(v)),
we get the constant value log 2.
Therefore, the divergence at every point b of the edge e1 is log 2.
By symmetry, the same is true of e2 and e3.
The maximum divergence from this model is log 2 and there are
infinitely many maximizers!
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More in the paper...

Maximum divergence from reducible hierarchical log-linear models.
I decomposition theory of logarithmic Voronoi polytopes
I study how to use this decomposition to obtain and bound information

divergence to reducible models
Maximum divergence from toric models of ML degree one:

I Multinomial distributions revisited
I Box model
I Trapezoid model
I Some three-dimensional models
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Thanks!
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