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Graphical models

Graphical models encode relationships between random variables using a
graph structure:

Vertices → random variables

Edges → conditional dependence relations

Any graphical model adopts a natural parametrization which can be read
from the structure of the underlying graph.

Widely used in:

⋆ statistics (causal inference)
⋆ machine learning (Bayesian networks, generative models)
⋆ computational biology (protein interaction networks)
⋆ phylogenetics (gene trees)
⋆ economics (dependencies between financial entities)
⋆ computer vision (image structures and relationships within scenes)
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Example

Three random variables:

X1 : length of a person’s hair (bald, short, medium, and long).
X2 : how often a person watches soccer (never, sometimes, and often).

H : a person’s gender!

X1

H

X2

The random variable G could be hidden or observed.

We write X1 ⊥⊥ X2|H.
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Parametric vs. implicit description

Given a model, parametrized by

φ : θ = (θ1, . . . , θn) 7→
(
f1(θ), f2(θ), . . . fm(θ)

)
,

we are interested in describing the polynomials defining image(φ). This
process is called implicitization.

Example: the independence model.
Parametrization:
(θ1, θ2) 7→

(
θ1θ2︸︷︷︸
p1

, θ1(1− θ2)︸ ︷︷ ︸
p2

, (1− θ1)θ2︸ ︷︷ ︸
p3

, (1− θ1)(1− θ2)︸ ︷︷ ︸
p4

)
.

Implicit ideal: I = ⟨p1p4 − p2p3, p1 + p2 + p3 + p4 − 1⟩.

The generators of the ideal I are called model invariants.
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Undirected Graphical Models

Setup: Random variables (Xv )v∈V and undirected graph G = (V ,E ).

The graph G specifies dependencies between random variables.

Global Markov Property of G : all conditional independence statements

XA ⊥⊥ XB |XC

for all disjoint sets A, B, and C such that C separates A and B in G .

Example:

1

2

3

4 X1 ⊥⊥ X4|(X2,X3)
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Parametrized Graphical Models

Factorization:

p(x) =
1

Z

∏
C∈C(G)

ψC (xC ),

where C(G ) is the collection of maximal cliques of G .

Example:

1

2

3

4
p(x1, x2, x3, x4) ∝ ψ123(x1, x2, x3) · ψ234(x2, x3, x4)

Theorem (Hammersley-Clifford)

A positive probability density satisfies the global Markov property on the
graph G if and only if it factorizes according to G.
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Discrete Undirected Graphical Models

Finite state space R =
∏

v∈V [dv ]. For A ⊂ V , let RA =
∏

v∈A[dv ] and
dA := #RA =

∏
v∈A dv .

Definition

The discrete log-linear graphical model MG consists of all probability
distributions p ∈ ∆|R| such that

pi =
1

Z (θ)

∏
C∈C(G)

θ
(C)
iC
.

Example

1

2

3

4

pi1i2i3i4 ∝ θ
(C1)
i1i2i3

· θ(C2)
i2i3i4

This is a log-linear model! It is parametrized by
monomials and its Zariski closure is a toric variety.
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Log-linear (toric) models

Every log-linear model is specified by an integer matrix A ∈ Zd×n with the
vector of all ones in its rowspan.

Let A = [A1 A2 . . . An] and θ
Aj := θ

a1j
1 . . . θ

adj
d .

The log-linear model MA is parametrized as

θ 7→ (θA1 , θA2 , . . . , θAn).

The implicit description of this model is given as

IA = ⟨pu − pv : u − v ∈ kerZ(A)⟩.

Example:
...

A =

[
2 1 0
0 1 2

] Parametrization: (θ1, θ2) 7→ (θ21, θ1θ2, θ22).
...
Ideal: IA = ⟨p1p3 − p22⟩.
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A-matrix

Diamond graph, binary variables.
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



000• 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
001• 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
010• 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
011• 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
100• 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
101• 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
110• 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
111• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
•000 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
•001 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
•010 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
•011 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
•100 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
•101 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
•110 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
•111 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

1

2

3

4
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Mixture Models

We use the rth mixture to model a situation where the population is split
into r subpopulations.

Mixtr (M) = {π1p1 + . . .+ πrpr : π ∈ ∆r ,pi ∈ M for all i ∈ [r ]}

Secant varieties: Given a variety W

Secr (W ) := {α1w1 + . . .+ αrw r :
∑

αi = 1 and w i ∈ W for all i ∈ [r ]}

Parameterization of Mixtr (MG ):

pi =
1

Z (θ)

r∑
j=1

∏
C∈C

θ
(j ,C)
iC
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Mixture Models

We use the rth mixture to model a situation where the population is split
into r subpopulations.

Mixtr (M) = {π1p1 + . . .+ πrpr : π ∈ ∆r ,pi ∈ M for all i ∈ [r ]}

Secant varieties: Given a variety W

Secr (W ) := {α1w1 + . . .+ αrw r :
∑

αi = 1 and w i ∈ W for all i ∈ [r ]}

Questions: Dimension? Ideal I
(r)
G ?

Expected dimension: min{r dim(MG ) + (r − 1),
∏

i∈V (G) di − 1}.
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Mixtures of the independence model

Independence model

= graphical model with empty graph,

= intersection of the probability simplex with the set of tensors of
nonnegative rank at most 1.

Ideal of mixtures:

r = 2: Generated by all 3× 3 minors of all flattenings.
[Allman et al., 2015].

r ≥ 3: Minors are not enough (“Salmon conjecture”).

Dimension of mixtures:

When the tensors are matrices, these are always defective.

The dimension of the set of all rank r m × n matrices is
r(m + n − r) < r(m + n − 1) + (r − 1) when r > 1.

Otherwise, “usually” of expected dimension, for details see
[Landsberg, 2015, Section 5.5].
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Sub-Ideals via Conditional Independence

Notation:

For S ⊂ V , let RS :=
∏

v∈S [dv ] be the state space restricted to S

For iS ∈ RS , define the marginal

piS+ :=
∑

j∈RV−S

piS j

I
(r)
jC ;A⊥⊥B = ideal of (r + 1)× (r + 1) minors of the matrix whose
rows/columns are indexed by iA/iB and whose (iA, iB) entry is piAiB jC+

Proposition (A.-Coons-Sturma, 2024)

Let A,B,C ⊂ V be disjoint sets such that C separates A and B in G.

Then for each jC ∈ RC , I
(r)
G contains I

(r)
jC ;A⊥⊥B .

2 2 2 →
[
p111 p112
p211 p212

]
and

[
p121 p122
p221 p222

]
→ p111p212 − p112p211

p121p222 − p122p221
.
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Ideals

Question: Is I
(r)
G the sum of these sub-ideals?

No!

Example (Second Mixture of the Binary 5-path)

1 2 3 4 5

By the proposition, the ideal I
(2)
G contains 32 minimal cubic generators.

However it also has 57 minimal quartic generators of the form:
p11222p21112p22121p22211 − p11112p21222p22121p22211 − p11221p21112p22122p22211 + p11112p21221p22122p22211−

p11222p21111p22121p22212 + p11111p21222p22121p22212 + p11221p21111p22122p22212 − p11111p21221p22122p22212−

p11212p21122p22111p22221 + p11122p21212p22111p22221 + p11211p21122p22112p22221 − p11122p21211p22112p22221+

p11212p21121p22111p22222 − p11121p21212p22111p22222 − p11211p21121p22112p22222 + p11121p21211p22112p22222.

Shout-out: MultigradedImplicitization.m2 by Joe Cummings and
Ben Hollering
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Clique-Stars

Definition

A graph G is a clique star if it is a union of cliques, G = ∪k
i=1C̃i , and there

is another clique S such that C̃i ∩ C̃j = S for all i ̸= j .

Moreover, we write Ci = C̃i \ S .

Examples:

1

2
3

4

5

6

1

2

3

4 1 2 3
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Clique-Stars: Ideal

Notation: I
(r)
jS ,dC1×···×dCk

denotes the vanishing ideal of the rth mixture of

the k-way independence model with the states
∏

i∈C di for each clique C ,
with the fixed value XS = jS ∈ RS .

Example

2

2

2

2

2

→ 2

2

2

2

2

→


p11111 p12111 p21111 p22111
p11112 p12112 p21112 p22112
p11121 p12121 p21121 p22121
p11122 p12122 p21122 p22122


Theorem (A.-Coons-Sturma, 2024)

Let G = (C1 ∪ · · · ∪ Ck ∪ S ,E ) be a clique-star. Then

I
(r)
G =

∑
jS∈RS

I
(r)
jS ,dC1×···×dCk

.
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Clique-Stars: Dimension

Theorem (A.-Coons-Sturma, 2024)

Let G = (C1 ∪ · · · ∪ Ck ∪ S ,E ) be a clique-star. Then

dim(Secr (MG )) = min

{
dS · dim(T r

dC1×···×dCk
)− 1,

∏
v∈V

dv − 1

}
,

where T r
dC1×···×dCk

is the set of dC1 × · · · × dCk
tensors of nonnegative rank

at most r .

Example:

2

2

2

2

2

If r = 2 and all variables are binary, then

dim(Sec2(MG )) = min{2 ·2 · (4+4−2)−1, 31} = 23.

Expected dimension is 27 (similar for 3-path).

Proof: Restructure Jacobian of parametrization s.t. it is block-diagonal.
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Dimensions

Let Pn denote the path with n vertices. We have seen that the secants of
MP3 are defective.

Question: Are the secants of MPn defective for n > 3?
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Dimensions

Let Pn denote the path with n vertices. We have seen that the secants of
MP3 are defective.

Question: Are the secants of MPn defective for n > 3? No!

Surprising Example

1 2 3 4

2 3 2 2

The dimension of the toric model MP4 with
d1 = d3 = d4 = 2 and d2 = 3 is 10. Its second
secant has dimension

21 = 2× 10 + (2− 1),

which is the expected dimension.
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Dimensions of Second Secants for Decomposable Graphs

Theorem (A.-Coons-Sturma 2024)

Let G be a decomposable graph that is not a clique star with dv ≥ 2 for
all v ∈ V . Then

dim(Mixt2MG ) = 2 dim(MG ) + 1.

In particular, the secant variety has the expected dimension.

Why do we care?

This means the parameters are ”as identifiable as possible”

In other words, they can be identified to the same extent as they can
be for the log-linear model
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Proof Strategy: Slicing Point Configurations

Theorem (Theorem 2.3, Draisma 2008)

Let VA be the toric variety specified by integer matrix A ∈ Zd×n.

Let v ∈ (Rd)∗.

Let A+ denote the columns of A such that v · a > 0.

Similarly, A− consists of the columns of A such that v · a < 0.

Then
dim

(
Sec2(VA)

)
≥ rank(A+) + rank(A−)− 1.

In particular, if we can separate the vertices of conv(A) with a hyperplane
so that the columns on either side have full rank, then the secant has the
expected dimension.
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Proof Strategy

Graphs with three maximal cliques:

we show that we can extend a hyperplane normal v for G to v′ for G ′

when G ′ is obtained by:

adding a vertex without changing the clique structure, or
increasing dv by 1 for some vertex v .

Any such graph can be obtained from P4 or P3 ⊔ P1 by a sequence of
these operations, so we find hyperplanes for these two graphs.

Graphs with more than three maximal cliques:

Find a separating hyperplane for a subgraph with three cliques

Show that extending by zeros on the rest of the graph gives a
separating hyperplane for all of G
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Future Work

Conjecture (A.-Coons-Sturma, 2024)

If G is any graph that is not a clique star with dv ≥ 2 for all v ∈ V , then
its second mixture has the expected dimension.

Question

Draisma’s theorem can also be applied when

we take r -mixtures for arbitrary r and/or

we take mixtures of several different graphs (join varieties).

What happens then?

Question

Dimensions of mixtures of your favorite log-linear model?
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