Logarithmic Voronoi cells for Gaussian models

Yulia Alexandr (UC Berkeley) joint work with Serkan Hoşten (SFSU)

SIAM Conference on Applied Algebraic Geometry July 10 – 14, 2023

Gaussian models: general

Let X be an m-dimensional random vector, which has the density function

$$p_{\mu,\Sigma}(x) = rac{1}{(2\pi)^{m/2} (\det \Sigma)^{1/2}} \exp\left\{-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)
ight\}, \quad x \in \mathbb{R}^m$$

with respect to the parameters $\mu \in \mathbb{R}^m$ and $\Sigma \in \mathsf{PD}_m$.

Such X is distributed according to the *multivariate normal distribution*, also called the *Gaussian distribution* $\mathcal{N}(\mu, \Sigma)$.

For $\Theta \subseteq \mathbb{R}^m \times \mathsf{PD}_m$, the statistical model

$$\mathcal{P}_{\Theta} = \{\mathcal{N}(\mu, \Sigma) : \theta = (\mu, \Sigma) \in \Theta\}$$

is called a *Gaussian model*. We identify the Gaussian model \mathcal{P}_{Θ} with its parameter space $\Theta.$

Gaussian models: general

For a sampled data consisting of *n* vectors $X^{(1)}, \dots, X^{(n)} \in \mathbb{R}^m$, we define the sample mean and sample covariance as

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X^{(i)}$$
 and $S = \frac{1}{n} \sum_{i=1}^{n} (X^{(i)} - \bar{X}) (X^{(i)} - \bar{X})^{T}$,

respectively. The log-likelihood function is defined as

$$\ell_n(\mu,\Sigma) = -rac{n}{2}\log\det\Sigma - rac{1}{2}\operatorname{tr}ig(S\Sigma^{-1}ig) - rac{n}{2}(ar{X}-\mu)^T\Sigma^{-1}(ar{X}-\mu).$$

Proposition (A., Hoșten)

Consider the Gaussian model with parameter space $\Theta = \Theta_1 \times \{Id_m\}$ for some $\Theta_1 \subseteq \mathbb{R}^m$. For any point in this model, its logarithmic Voronoi cell is equal to its Euclidean Voronoi cell.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Algebraic models

In practice, we will only consider models given by parameter spaces of the form $\Theta = \mathbb{R}^m \times \Theta_2$ where $\Theta_2 \subseteq PD_m$. Thus, a Gaussian model is a subset of PD_m . The log-likelihood function is then

$$\ell_n(\Sigma,S) = -\frac{n}{2}\log \det \Sigma - \frac{n}{2}\operatorname{tr}(S\Sigma^{-1}).$$

All Gaussian models discussed in this talk are algebraic. In other words,

$$\Theta = \mathcal{V} \cap \mathsf{PD}_m,$$

where $\mathcal{V} \subseteq \mathbb{C}^m$ is a variety given by polynomials in the entries of $\Sigma = (\sigma_{ij})$.

Natural questions

- Fix a Gaussian model $\Theta \subseteq \mathsf{PD}_m$.
 - The maximum likelihood estimation problem (MLE):

Given a sample covariance matrix $S \in PD_m$, which matrix $\Sigma \in \Theta$ did it most likely come from? In other words, we wish to maximize $\ell_n(\Sigma, S)$ over all points $\Sigma \in \Theta$.

Natural questions

Fix a Gaussian model $\Theta \subseteq \mathsf{PD}_m$.

• The maximum likelihood estimation problem (MLE):

Given a sample covariance matrix $S \in PD_m$, which matrix $\Sigma \in \Theta$ did it most likely come from? In other words, we wish to maximize $\ell_n(\Sigma, S)$ over all points $\Sigma \in \Theta$.

Occupation Computing logarithmic Voronoi cells:

Given a matrix $\Sigma \in \Theta$, what is the set of all $S \in PD_m$ that have Σ as a global maximum when optimizing the function $\ell_n(\Sigma, S)$ over Θ ?

The set of all such matrices $S \in PD_m$ is the *logarithmic Voronoi cell* at Σ .

Logarithmic Voronoi cells

Proposition (A., Heaton & A., Hosten)

Logarithmic Voronoi cells are covex sets.

The maximum likelihood degree (ML degree) of Θ is the number of complex critical points in $\text{Sym}_m(\mathbb{C})$ when optimizing $\ell_n(\Sigma, S)$ over Θ for a generic matrix S.

For $\Sigma \in \Theta$, the *log-normal matrix space* at Σ is the set of $S \in \text{Sym}_m(\mathbb{R})$ such that Σ appears as a critical point of $\ell_n(\Sigma, S)$. The intersection of this space with PD_m is the *log-normal spectrahedron* $\mathcal{K}_{\Theta}\Sigma$ at Σ .

The logarithmic Voronoi cell at Σ is always contained in the log-normal spectrahedron at $\Sigma.$

Example: CI model $X1 \perp X3$ and $X1 \perp X3 | X2$ Consider the model Θ given parametrically as

$$\Theta = \{\Sigma = (\sigma_{ij}) \in \mathsf{PD}_3 : \sigma_{13} = 0 \text{ and } \sigma_{12}\sigma_{23} - \sigma_{22}\sigma_{13} = 0\}.$$

This model is the union of two linear four-dimensional planes. It has ML degree 2. The log-normal spectrahedron of each point $\Sigma \in \Theta$ is an ellipse. Each log-Voronoi cell is given as:

Yulia Alexandr

Spectrahedral cells

When are logarithmic Voronoi cells equal to the log-normal spectrahedra?

Theorem (A., Hoșten)

If Θ is a linear concentration model or a model of ML degree one, the logarithmic Voronoi cell at any $\Sigma \in \Theta$ equals the log-normal spectrahedron at Σ . In particular, this includes both undirected and directed graphical models.

Spectrahedral cells

When are logarithmic Voronoi cells equal to the log-normal spectrahedra?

Theorem (A., Hoșten)

If Θ is a linear concentration model or a model of ML degree one, the logarithmic Voronoi cell at any $\Sigma \in \Theta$ equals the log-normal spectrahedron at Σ . In particular, this includes both undirected and directed graphical models.

Let G = (V, E) be a simple undirected graph with |V(G)| = m. A *concentration model* of G is the model

$$\Theta = \{\Sigma \in \mathsf{PD}_m : (\Sigma)_{ij}^{-1} = 0 \text{ if } ij \notin E(G) \text{ and } i \neq j\}.$$

The logarithmic Voronoi cell at Σ is:

$$\mathsf{log}\,\mathsf{Vor}_{\Theta}(\Sigma)=\{S\in\mathsf{PD}_m:\Sigma_{ij}=S_{ij} ext{ for all } ij\in E(G) ext{ and } i=j\}.$$

Example

The concentration model of $\bullet \bullet \bullet \bullet$ is defined by

 $\Theta = \{ \Sigma = (\sigma_{ij}) \in \mathsf{PD}_4 : (\Sigma^{-1})_{13} = (\Sigma^{-1})_{14} = (\Sigma^{-1})_{24} = 0 \}.$

Yulia Alexandr

July 14, 2023 9/14

Covariance models and the bivariate correlation model

Let $A \in \mathsf{PD}_m$ and let \mathcal{L} be a linear subspace of $\mathsf{Sym}_m(\mathbb{R})$. Then $A + \mathcal{L}$ is an affine subspace of $\mathsf{Sym}(\mathbb{R}^m)$. Models defined by $\Theta = (A + \mathcal{L}) \cap \mathsf{PD}_m$ are called *covariance models*.

The *bivariate correlation model* is the covariance model

$$\Theta = \left\{ \Sigma_x = egin{pmatrix} 1 & x \ x & 1 \end{pmatrix} : x \in (-1,1)
ight\}.$$

This model has ML degree 3. For a general matrix $S = (S_{ij}) \in PD_2$, the critical points are given by the roots of the polynomial

$$f(x) = x^3 - bx^2 - x(1 - 2a) - b$$
,

where $b = S_{12}$ and $a = (S_{11} + S_{22})/2$ [Améndola and Zwiernik].

The bivariate correlation model

Fix $c \in (-1,1)$ so $\Sigma_c \in \Theta$. The log-normal spectrahedron of Σ_c is

$$\begin{split} &\mathcal{K}_{\Theta}(\Sigma_{c}) = \{ S \in \mathsf{PD}_{2} : f(c) = 0 \} \\ &= \{ S \in \mathsf{PD}_{2} : a = (bc^{2} - c^{3} + b + c)/2c \} \\ &= \left\{ S_{b,k} = \begin{pmatrix} k & b \\ b & 2a - k \end{pmatrix} \succ 0 : \frac{0 \le k \le 2a}{a = (bc^{2} - c^{3} + b + c)/2c} \right\}. \end{split}$$

Theorem (A., Hoșten)

Let Θ be the bivariate correlation model and let $\Sigma_c \in \Theta$. If c > 0, then

$$\log \operatorname{Vor}_{\Theta}(\Sigma_c) = \{S_{b,k} \in \mathcal{K}_{\Theta}(\Sigma_c) : b \geq 0\}.$$

If c < 0, then

$$\log \operatorname{Vor}_{\Theta}(\Sigma_c) = \{S_{b,k} \in \mathcal{K}_{\Theta}(\Sigma_c) : b \leq 0\}.$$

If c = 0, then $\log \operatorname{Vor}_{\Theta}(\Sigma_0) = \{\operatorname{diag}(k, 2a - k) : a \ge 1/2, 0 \le k \le 2a\}.$

The bivariate correlation model

Important things to note:

- The log-Voronoi cell of Σ_c is strictly contained in the log-normal spectrahedron of Σ_c .
- Logarithmic Voronoi cells of Θ are semi-algebraic sets! This is extremely surprising!

The logarithmic Voronoi cell and the log-normal spectrahedron at c = 1/2:

The boundary: transcendental? algebraic?

Given a Gaussian model Θ and $\Sigma \in \Theta$, the matrix $S \in \mathsf{PD}_m$ is on the boundary of log $\mathsf{Vor}_{\Theta}(\Sigma)$ if $S \in \mathsf{log} \, \mathsf{Vor}_{\Theta}(\Sigma)$ and there is some $\Sigma' \in \Theta$ such that $\ell(\Sigma, S) = \ell(\Sigma', S)$.

The bivariate correlation models fit into a larger class of models known as *unrestricted correlation models*. Such a model is given by the parameter space

$$\Theta = \{\Sigma \in \mathsf{Sym}(\mathbb{R}^m) : \Sigma_{ii} = 1, i \in [m]\} \cap \mathsf{PD}_m.$$

When m = 3, the model is a compact spectrahedron known as the elliptope. Its ML degree is 15.

Conjecture

The logarithmic Voronoi cells for general points on the elliptope are not semi-algebraic; in other words, their boundary is defined by transcendental functions.

< □ > < 同 > < 回 > < 回 > < 回 >

Thanks!

×	 ~ ~ !	OVO D	-
		EXALL	

Logarithmic Voronoi cells

July 14, 2023 14 / 14

æ

・ロト ・雪ト ・モト・モー