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Algebraic varieties
An algebraic variety is the set of all points that satisfy a system of
polynomial equations.

Ideal

⟨x2 + y2 − 1⟩

Variety

x

y

⟨x2 + y2 − 1, x − z⟩
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Statistical models

Many statistical models are made up of distributions whose coordinates
satisfy polynomial equations.

Example
Let X1 and X2 be binary random variables. Let pij = P(X1 = i ,X2 = j).
Then X1 and X2 are independent if and only if

det

[
p11 p12
p21 p22

]
= p11p22 − p12p21 = 0.

Exercise: think about why this is true!

Recall that X1 and X2 are independent if

P(X1 = i |X2 = j) = P(X1 = i) · P(X2 = j).
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Statistical models

How do algebraic statisticians think of statistical models?
A probability simplex is defined as

∆n−1 = {(p1, . . . , pn) : p1 + · · ·+ pn = 1, pi ≥ 0 for i ∈ [n]}.

A statistical model is a subset of ∆n−1.
A variety is the set of solutions to a system of polynomial equations.
An algebraic statistical model is a subset M = V ∩∆n−1 for some
variety V ⊆ Cn.
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Maximum likelihood estimation

(p1, p2, p3)
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Maximum likelihood estimation

(p1, p2, p3)

L = c · p4/9
1 p

4/9
2 p

1/9
3

ℓu(p) = 4/9 · log(p1) + 4/9 · log(p2) + 1/9 · log(p3) + log(c).
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Maximum likelihood estimation

4) U

P L
⑫

P

Let M ⊆ ∆n−1 be a statistical model.

For an empirical data point u = (u1, ..., un) ∈ ∆n−1, the log-likelihood
function with respect to u assuming distribution p = (p1, ..., pn) ∈ M is

ℓu(p) = u1 log p1 + u2 log p2 + · · ·+ un log pn.
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Maximum likelihood estimation

Fix an algebraic statistical model M ⊆ ∆n−1

1 The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution u ∈ ∆n−1, which point p ∈ M did
it most likely come from? In other words, we wish to maximize ℓu(p) over
all points p ∈ M.

2 Computing logarithmic Voronoi cells:

Given a point q ∈ M, what is the set of all points u ∈ ∆n−1 that have q
as a global maximum when optimizing the function ℓu(p) over M?

The set of all such elements u ∈ ∆n−1 is the logarithmic Voronoi cell at q.
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Logarithmic Voronoi cells
Proposition (A., Heaton)
Logarithmic Voronoi cells are convex sets.

Theorem (A., Heaton)
If M is a finite model, a linear model, or a toric model, the logarithmic
Voronoi cell at any point p ∈ M is a polytope.

Example (The twisted cubic.)

The curve is given by θ 7→
(
θ3, 3θ2(1 − θ), 3θ(1 − θ)2, (1 − θ)3

)
.
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Linear models

Theorem (A.)
For linear models, logarithmic Voronoi cells at all interior points on the
model have the same combinatorial type. This type can be described via
Gale diagrams.
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Why do we care?

Logarithmic Voronoi cells can also be useful in data privacy, particularly for
statistical disclosure limitation.

If a logarithmic Voronoi cell contains only one point then releasing the
model estimate will also release the observed data to the public, even
if it was intended to be private.

For models with complicated geometry, numerical methods are necessary to
analyze logarithmic Voronoi cells.
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Maximizing divergence

For two distributions p, q ∈ ∆n−1, the Kullback-Leibler (KL) divergence is

D(p||q) =
n∑

i=1

pi log

(
pi
qi

)
.

For fixed u ∈ ∆n−1 maximizing ℓu(p) = minimizing D(u||p) over p ∈ M.

What is the maximum and the maximizers of max
u∈∆n−1

min
p∈M

D(u||p)?

In other words, which point in the simplex is the farthest to its MLE?
problem formulated by Ay ’02 when M is a discrete exponential family
many information-theoretic results by Ay, Matus, Montufar, Rauh, etc.
neural networks develop in such a way to maximize the mutual
information between the input and output of each layer.
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Toric models
With Serkan Hoşten, we revisit this problem from a new perspective using
logarithmic Voronoi polytopes. We present an algorithm that combines the
combinatorics of the chamber complex with numerical algebraic geometry.
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Extensions

Continuous models (done for Gaussian models with Serkan Hoşten).
Mixture models and other models with singularities.

▶ Statistical disclosure limitation.
▶ Data privacy.
▶ Study Logarithmic Voronoi cells at singular and boundary points!
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Algebra in machine learning

AI is advancing faster than ever before, revolutionizing many fields
These advances outpace the development of theoretical methods to
understand its limits and uses
Bridging this gap is crucial for ensuring the responsible and effective
use of AI
This is the goal of the mathematical machine learning community.
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Neural networks

Any feedforward neural network with an activation function σ gives rise to

fθ : x 7→ gL ◦ σ ◦ gL−1 . . . σ ◦ g1(x)

where each layer has linear map gℓ : y 7→ Wℓy with parameter θℓ = Wℓ.

The dimension of the input space n0 and
the layer widths nℓ determine the
network’s architecture.

For a dataset X = [x1, x2, . . . , xn] and unknown parameters θ we are
interested in describing the constraints between the coordinates of the
array of model outputs FX (θ) = [fθ(x1), fθ(x2), . . . , fθ(xn)].
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ReLU networks
A ReLU network is given by the activation function

σ : y = (y1, . . . , ynℓ) 7→ (max{0, y1}, . . . ,max{0, ynℓ})
at each layer of the neural network.

this makes fθ(x) piece-wise linear
▶ natural subdivision of the input space into regions
▶ fθ(x) is a linear function of x in each region

now consider multiple data points X = [x1, . . . , xm]
▶ this subdivision extends to the parameter space
▶ FX (θ) is multi-linear in θ in each activation region

input space parameter space
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The main question

Problem

Describe the equations and inequalities that define the image of FA
X (θ) as

the parameter θ varies over an arbitrary activation region A in the
parameter space.
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Model equations
Given a model, parametrized by

φ : θ = (θ1, . . . , θn) 7→
(
f1(θ), f2(θ), . . . fm(θ)

)
,

we are interested in describing the polynomials defining image(φ). This
process is called implicitization.

Example (The independence model.)
Parametrization:
(θ1, θ2) 7→

(
θ1θ2︸︷︷︸
p1

, θ1(1 − θ2)︸ ︷︷ ︸
p2

, (1 − θ1)θ2︸ ︷︷ ︸
p3

, (1 − θ1)(1 − θ2)︸ ︷︷ ︸
p4

)
.

Implicit ideal: I = ⟨p1p4 − p2p3, p1 + p2 + p3 + p4 − 1⟩.

The generators of the ideal I are called model invariants.
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Implicitization

Model invariants capture core properties of the model that are independent
of parameterization and remain unchanged under the model’s symmetries.

Identifiability
▶ Can model parameters be uniquely determined from observed data?

Model selection
▶ Invariants can serve as useful statistics for testing model fit and

constraint-based model selection
Inference

▶ Polynomials encode information about independence
Model predictions

▶ Invariants provide reliable theoretical guarantees

Neural network verification?

However, implicitization is also very computationally expensive!
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Parametrization
The number of linear pieces over the input space can be enormous.
The linear pieces share parameters and are not independent.
We investigate the relationships between the linear pieces.
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Mathematical setup

Question: What constraints do the outputs of a ReLU network satisfy?
Let X = [x1, . . . , xm] define the activation region A = [a1, . . . , am].
Split X into blocks [X1, . . .Xk ] such where Xi contains data points
that follow the same activation pattern.
Consider the parametrization φA

X : Rp → RnL×m : θ 7→ FA
X (θ).

Within each block, this parametrization can be written θ 7→ Mi (θ)Xi ,
where M(θ) is a matrix dependent on the activation pattern and θ.
So, over all blocks, the parametrization is

φA
X : θ 7→ [M1(θ)X1 | M2(θ)X2 | · · · | Mk(θ)Xk ].

Define the ReLU output variety as im(φA
X ). Denote it by V A

X .

Question: What are the generators of IAX := I (V A
X )? Dimension? Degree?
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Example: 2 blocks

Consider a general dataset X = [ x1, x2, x3, x4 ].
X1 = [x1, x2] follow the pattern (1, 0).
X2 = [x3, x4] follow the pattern (1, 1).

in hidden out

ReLU output variety: θ 7→ [M1(θ)X1 | M2(θ)X2] with θ = (W (1),W (2))

M1(θ) =
(

w
(1)
11 w

(2)
11 w

(1)
12 w

(2)
11

w
(1)
11 w

(2)
21 w

(1)
12 w

(2)
21

)
,M2(θ) =

(
w

(1)
11 w

(2)
11 +w

(1)
21 w

(2)
12 w

(1)
12 w

(2)
11 +w

(1)
22 w

(2)
12

w
(1)
11 w

(2)
21 +w

(1)
21 w

(2)
22 w

(1)
12 w

(2)
21 +w

(1)
22 w

(2)
22

)
.

ReLU pattern variety: θ 7→ [M1(θ) | M2(θ)] = (m1 m3 m5 m7
m2 m4 m6 m8 )

JA = ⟨det (m1 m3
m2 m4 )⟩, det

(
m1−m5 m3−m7
m2−m6 m4−m8

)
⟩.

The ideal IAX is obtained from JA in terms of fixed but arbitrary data X1,X2.
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Two blocks, shallow networks

Let |R1| = r1, |R2| = r2, |S | = s.
Let t = r1 + r2 − 2s.

Theorem (A.-Montúfar, 2025+)

The ideal JA contains:
1 (r1 + 1)-minors of M1;
2 (r2 + 1)-minors of M2;
3 (n1 + 1)-minors of [M1 | M2] and [MT

1 | MT
2 ];

4 (t + 1)-minors of M1 −M2.

Conjecture: no other polynomials are needed to generate the ideal.
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Example: 3 blocks

48 cubics: 3-minors of M1, M2, and M3;
48 cubics: 3-minors of M1 −M2, M2 −M3, and M2 −M3;
120 quartics: 4-minors of [Mi | Mj ] and [MT

i | MT
j ];

40 quartics: 4-minors of [M1 −M2 | M2 −M3] and
[
M1 −M2
M2 −M3

]
;

2000 quintics: algebraically independent 5-minors of[
M1 M2

M3 M2

]
,

[
M1 M2

M3 M3

]
,

[
M2 M3

M1 M1

]
,

[
M2 M3

M1 M3

]
,

[
M3 M1

M2 M2

]
,

[
M3 M1

M2 M1

]
.
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Thank you!

Questions?
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