Logarithmic Voronoi polytopes

Yulia Alexandr (UC Berkeley)

Mathematical Methods in Data Analysis Tirana, Albania July 19, 2022

Yulia Alexandr

Logarithmic Voronoi polytopes

July 19, 2022

Voronoi cells in the Euclidean case

Let X be a **finite** point configuration in \mathbb{R}^n .

- The Voronoi cell of x ∈ X is the set of all points that are closer to x than any other y ∈ X, in the Euclidean metric.
- The subset of points that are equidistant from x and any other points in X is the *boundary* of the Voronoi cell of x.
- Voronoi cells partition \mathbb{R}^n into convex polyhedra.

If X is a **variety**, each Voronoi cell is a convex semialgebraic set in the normal space of X at a point. The algebraic boundaries of these Voronoi cells were computed by Cifuentes, Ranestad, Sturmfels and Weinstein.

Basic definitions

• A probability simplex is defined as

$$\Delta_{n-1} = \{ (p_1, \dots, p_n) : p_1 + \dots + p_n = 1, p_i \ge 0 \text{ for } i \in [n] \}.$$

- An algebraic statistical model is a subset M = V ∩ Δ_{n-1} for some variety V ⊆ Cⁿ.
- For an empirical data point u = (u₁,..., u_n) ∈ Δ_{n-1}, the log-likelihood function defined by u assuming distribution p = (p₁,..., p_n) ∈ M is

$$\ell_u(p) = u_1 \log p_1 + u_2 \log p_2 + \cdots + u_n \log p_n.$$

< 回 > < 回 > < 回 >

Maximum likelihood estimation

Fix a model $\mathcal{M} \in \Delta_{n-1}$.

The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_u(x)$ over all points $p \in \mathcal{M}$.

The maximum likelihood degree (ML degree) of \mathcal{M} is the number of complex solutions when optimizing the log-likelihood function $\ell_u(x)$ for generic data u. It measures complexity of MLE.

MLE is an optimization problem very important in algebraic statistics!

Logarithmic Voronoi cells

The "inverse" problem:

Fix a point $p \in \mathcal{M}$. What is the set of all points $u \in \Delta_{n-1}$ that have p as a global maximum when optimizing the function $\ell_u(x)$?

The set of all such elements $u \in \Delta_{n-1}$ the *logarithmic Voronoi cell* at p.

Logarithmic Voronoi cells

The "inverse" problem:

Fix a point $p \in \mathcal{M}$. What is the set of all points $u \in \Delta_{n-1}$ that have p as a global maximum when optimizing the function $\ell_u(x)$?

The set of all such elements $u \in \Delta_{n-1}$ the *logarithmic Voronoi cell* at p.

Proposition (A., Heaton)

Logarithmic Voronoi cells are convex sets.

Proof: Exercise.

When are logarithmic Voronoi cells polytopes?

There are families of models on which the log-likelihood function is strictly concave. This guarantees that $\ell_u(x)$ has the unique critical point of on the model for every $u \in \Delta_{n-1}$, despite the ML degree possibly being large. Examples of such families include toric models and linear models.

Theorem (A., Heaton)

If \mathcal{M} is a toric model or a linear model, the logarithmic Voronoi cell at any point $p \in \mathcal{M}$ is a polytope.

How to compute logarithmic Voronoi polytopes?

Let \mathcal{M} be a toric model or a linear model. given by the vanishing set of the polynomial system $f = \{f_1, \ldots, f_m\}$. Fix $u \in \Delta_{n-1}$ (for now).

- The method of Lagrange multipliers can be used to find critical points of $\ell_u(x) = u_1 \log x_1 + u_2 \log x_2 + \cdots + u_n \log x_n$ given the constraints f.
- Form the *augmented Jacobian*:

$$\mathsf{A} = \left[\begin{array}{c} \mathcal{J}_{\mathsf{f}} \\ \nabla \ell_{u} \end{array} \right] = \left[\begin{array}{c} \nabla f_{1} \\ \vdots \\ \nabla f_{m} \\ \nabla \ell_{u} \end{array} \right]$$

- Critical points are found by requiring that the gradient of ℓ_u lies in the rowspace of \mathcal{J}_f .
- All $(c + 1) \times (c + 1)$ minors of A must vanish, where c is the co-dimension of \mathcal{M} .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

How to compute logarithmic Voronoi polytopes?

Let \mathcal{M} be a toric model or a linear model. given by the vanishing set of the polynomial system $f = \{f_1, \ldots, f_m\}$. Now fix a point $p \in \mathcal{M}$.

- Vanishing of $(c+1) \times (c+1)$ minors is a linear condition in u.
- The linear space of all $u \in \mathbb{R}^n$ for which the minors vanish is the *log-normal space* at *p*.
- Intersecting the log-normal space at p with Δ_{n-1} , we get a polytope.
- This polytope is the set of all data points $u \in \Delta_{n-1}$ that have p as a critical point of $\ell_u(x)$.
- This polytope is the logarithmic Voronoi polytope at *p*.

3

Consider a model parametrized by

$$heta\mapsto \left(heta^2,2 heta(1- heta),(1- heta)^2
ight).$$

Performing implicitization, we find that the model $\mathcal{M} = \mathcal{V}(f)$ where $f : \mathbb{C}^3 \to \mathbb{C}^2$ is given by:

$$f = \begin{bmatrix} 4x_1x_3 - x_2^2 \\ x_1 + x_2 + x_3 - 1 \end{bmatrix}.$$

The augmented Jacobian is given by:

$$A = \begin{bmatrix} 4x_3 & -2x_2 & 4x_1 \\ 1 & 1 & 1 \\ u_1/x_1 & u_2/x_2 & u_3/x_3 \end{bmatrix}$$

Fix a point $p \in M$ and substitute x_i for p_i in A. All points $u \in \mathbb{R}^3$ at which the determinant vanishes define the log-normal space at p.

$$\det A = 4u_1 - 4u_3 - 4u_2 \cdot \frac{x_1}{x_2} + 2u_1 \cdot \frac{x_2}{x_1} - 2u_3 \cdot \frac{x_2}{x_3} + 4u_2 \cdot \frac{x_3}{x_2}$$

For example, at $\theta = 0.2$, we get a point $p = (0.04, 0.32, 0.64) \in M$. The log-normal space at q is the plane

$$20u_1 + 7.5u_2 - 5u_3 = 0.$$

Sampling more points, we get the following pictures:

$$\det A = 4u_1 - 4u_3 - 4u_2 \cdot \frac{x_1}{x_2} + 2u_1 \cdot \frac{x_2}{x_1} - 2u_3 \cdot \frac{x_2}{x_3} + 4u_2 \cdot \frac{x_3}{x_2}$$

For example, at $\theta = 0.2$, we get a point $p = (0.04, 0.32, 0.64) \in M$. The log-normal space at q is the plane

$$20u_1 + 7.5u_2 - 5u_3 = 0.$$

Sampling more points, we get the following pictures:

Yu	lia	A	lex	an	dr

• 3 >

$$\det A = 4u_1 - 4u_3 - 4u_2 \cdot \frac{x_1}{x_2} + 2u_1 \cdot \frac{x_2}{x_1} - 2u_3 \cdot \frac{x_2}{x_3} + 4u_2 \cdot \frac{x_3}{x_2}$$

For example, at $\theta = 0.2$, we get a point $p = (0.04, 0.32, 0.64) \in M$. The log-normal space at q is the plane

$$20u_1 + 7.5u_2 - 5u_3 = 0.$$

Sampling more points, we get the following pictures:

The twisted cubic curve

 $\ensuremath{\mathcal{M}}$ is parametrized by

$$\theta \mapsto (\theta^3, 3\theta^2(1-\theta), 3\theta(1-\theta)^2, (1-\theta)^3).$$

		_			
· • • • •	10	^ .	0.2	-	
		= 1	IC 8		

Logarithmic Voronoi polytopes

July 19, 2022

∃ >

Linear models

Definition

A *discrete linear model* is an algebraic statistical model given parametrically by linear polynomials inside the probability simplex. It is a polytope!

Let ${\mathcal M}$ be a d-dimensional linear model given as the image of

$$\Theta \to \Delta_{n-1} : \theta \mapsto (f_1(\theta), \ldots, f_n(\theta))$$

where $\sum f_i(\theta) = 1$ and $f_i(\theta) > 0$. Every such model can be re-written as

$$\mathcal{M} = \{c - Bx : x \in \Theta\}$$

where B is a $n \times d$ matrix, whose columns sum to 0, and $c \in \mathbb{R}^n$ is a vector, whose coordinates sum to 1.

Vertices of logarithmic Voronoi polytopes

A co-circuit of B is a vector $v \in \mathbb{R}^n$ of minimal support such that vB = 0. A co-circuit is *positive* if all its coordinates are positive. We call a point $p = (p_1, \ldots, p_n) \in \mathcal{M}$ is *interior* if $p_i > 0$ for all $i \in [n]$.

For an interior point $p \in \mathcal{M}$, the logarithmic Voronoi polytope at p is

$$\log \operatorname{Vor}_{\mathcal{M}}(p) = \left\{ r \cdot \operatorname{diag}(p) \in \mathbb{R}^n : rB = 0, \ r \ge 0, \ \sum_{i=1}^n r_i p_i = 1 \right\}.$$

Proposition (A.)

For any interior point $p \in M$, the vertices of log Vor_M(p) are of the form $v \cdot \text{diag}(p)$ where v are unique representatives of the positive co-circuits of B such that $\sum_{i=1}^{n} v_i p_i = 1$.

Examples: d = 1

Theorem (A.)

Every (n - d - 1)-dimensional polytope with at most n facets appears as a logarithmic Voronoi cell of a d-dimensional linear model inside Δ_{n-1} .

Yulia Alexandr

Logarithmic Voronoi polytopes

Combinatorial type doesn't change

Theorem (A.)

Logarithmic Voronoi cells of all interior points in a linear model have the same combinatorial type.

So, it suffices to compute the combinatorial type for **any** interior point on a linear model.

Example

Consider the linear model $\mathcal M$ given as the image of the map

$$(x, y) \mapsto 1/4 \cdot (3x, y, y-x, 2-2x, 2-2y).$$

What are the vertices of \mathcal{M} ?

```
#get vertices of the model:
vars=var('x,v')
def model(x,v):
                   return vector((3/4*x, 1/4*y, 1/4*(y-x), 1/2*(1-x), 1/2*(1-y)))
m=model(x, y)
P=Polyhedron(ieqs=[(0,QQ(m[i].coefficient(x)),QQ(m[i].coefficient(y))) for i in range(3)]
                                                                                   +[(1/2,00(m[i].coefficient(x)),00(m[i].coefficient(y))) for i in range(3,5)])
P.vertices list()
P.f vector()
                [[0, 0], [1, 1], [0, 1]]
                (1, 3, 3, 1)
 for vert in P.vertices list():
                   model(x,y).subs({x:vert[0],y:vert[1]})
                (0, 0, 0, 1/2, 1/2)
                (3/4, 1/4, 0, 0, 0)
                 (0, 1/4, 1/4, 1/2, 0)
                                                                                                                                                                                                                                                                                                                           < ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
                                                                                                                                                                                                                                                                                                                                                                                                                                                               3
```

16 / 20

Example

```
Logarithmic Voronoi polytopes are triangles!
```

```
#get the vertices of a logarithmic Voronoi cell
vars=var('ul,u2,u3,u4,u5')
ll(x,y) = ul*log(m[0])+u2*log(m[1])+u3*log(m[2])+u4*log(m[3])+u5*log(m[4])
grad=vector((ll(x,y).derivative(x), ll(x,y).derivative(y)))
```

```
a=1/5; b=1/2
ev=grad.subs(x=a, y=b)
```

```
Q=Polyhedron(ieqs=[(0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1)],
eqns=[(0,ev[i].coefficient(u1),ev[i].coefficient(u2),ev[i].coefficient(u3),
ev[i].coefficient(u4),ev[i].coefficient(u5)) for i in range(2)]
+[(-1,1,1,1,1)], backend='normaliz');
```

Q=Q.change_ring(QQ)
Q.vertices_list()
Q.f_vector()
 [[0, 1/2, 0, 0, 1/2], [1/5, 0, 0, 4/5, 0], [1/5, 0, 3/10, 0, 1/2]]
 (1, 3, 3, 1)

イロト イポト イヨト イヨト

Big example

• \mathcal{M} is a 3-dimensional model inside the 5-dimensional simplex given by:

$$\begin{split} f_1 &= x_0 + x_1 + x_2 + x_3 + x_4 + x_5 - 1 \\ f_2 &= 20x_0x_2x_4 - 10x_0x_3^2 - 8x_1^2x_4 + 4x_1x_2x_3 - x_2^3 \\ f_3 &= 100x_0x_2x_5 - 20x_0x_3x_4 - 40x_1^2x_5 + 4x_1x_2x_4 + 2x_1x_3^2 - x_2^2x_3 \\ f_4 &= 100x_0x_3x_5 - 40x_0x_4^2 - 20x_1x_2x_5 + 4x_1x_3x_4 + 2x_2^2x_4 - x_2x_3^2 \\ f_5 &= 20x_1x_3x_5 - 8x_1x_4^2 - 10x_2^2x_5 + 4x_2x_3x_4 - x_3^3 \end{split}$$

- Pick point $p = \left(\frac{518}{9375}, \frac{124}{625}, \frac{192}{625}, \frac{168}{625}, \frac{86}{625}, \frac{307}{9375}\right) \in \mathcal{M}.$
- $\bullet~225$ 4 \times 4 minors of augmented Jacobian define the log-normal space.

Non-polytopal cells

- Log-normal space of *p* is 3-dimensional, and the log-normal polytope of *p* is a hexagon.
- Using the numerical Julia package HomotopyContinuation.jl, we may compute the logarithmic Voronoi cell of *p*.

Thanks!

	0.40	
	EXd	

・ロト ・四ト ・ヨト ・ヨト

э.