Moment varieties for mixtures of products

Yulia Alexandr (UC Berkeley) joint work with Joe Kileel and Bernd Sturmfels

CSU Fresno
May 6, 2023

The (nonparametric) set-up

Consider n independent random variables $X_{1}, X_{2}, \ldots, X_{n}$ on the line \mathbb{R}. Assumptions:
\star No assumptions about X_{k}, only that moments $\mu_{k i}=\mathbb{E}\left(X_{k}^{i}\right)$ exist.

* The moments $\mu_{k i}$ are unknowns.
\star The only equations we require are $\mu_{k 0}=1$ for $k=1,2 \ldots, n$.
We consider a random variable X on \mathbb{R}^{n} that is the product of these n arbitrary independent random variables on \mathbb{R}. By independence, we have

$$
\mathbb{E}\left(X_{1}^{i_{1}} X_{2}^{i_{2}} \cdots X_{n}^{i_{n}}\right)=\mathbb{E}\left(X_{1}^{i_{1}}\right) \cdot \mathbb{E}\left(X_{2}^{i_{2}}\right) \cdots \mathbb{E}\left(X_{n}^{i_{n}}\right)
$$

This leads us to the moment variety $\mathcal{M}_{n, d}$, which has parametrization

$$
m_{i_{1} i_{2} \cdots i_{n}}=\mu_{1 i_{1}} \mu_{2 i_{2}} \cdots \mu_{n i_{n}} \text { where } i_{1}, i_{2}, \ldots, i_{n} \geq 0 \text { and } i_{1}+i_{2}+\cdots+i_{n}=d .
$$

The image is a toric variety of dimension at most $n d-1$ in $\mathbb{P}\binom{n+d-1}{d}-1$.

Example

Consider $\mathcal{M}_{5,3}$ in \mathbb{P}^{34}. The solutions to $i_{1}+i_{2}+i_{3}+i_{4}+i_{5}=3$ can be grouped into three partitions: $\lambda=\left(\begin{array}{ll}1 & 1\end{array}\right), \lambda=(21), \lambda=(3)$. Consider the following three toric varieties of dimensions $4,8,4$ respectively:

$$
\begin{aligned}
\mathcal{M}_{5,(111)} \subset \mathbb{P}^{9}: m_{11100}=\mu_{11} \mu_{21} \mu_{31}, \ldots, m_{00111}=\mu_{31} \mu_{41} \mu_{51} \\
\mathcal{M}_{5,(21)} \subset \mathbb{P}^{19}: m_{21000}=\mu_{12} \mu_{21}, m_{12000}=\mu_{11} \mu_{22}, \ldots, m_{00012}=\mu_{41} \mu_{52} \\
\mathcal{M}_{5,(3)}=\mathbb{P}^{4}: m_{30000}=\mu_{13}, m_{03000}=\mu_{23}, \ldots, m_{00003}=\mu_{53}
\end{aligned}
$$

Combining these parametrizations yields the original variety.
We will also study $\mathcal{M}_{n, d}$ under projections $\mathbb{P}^{\binom{n+d-1}{d}-1} \ldots \mathbb{P}^{\left|N_{\lambda}\right|-1}$ for any partition λ of d with $\leq n$ parts. We denote these toric varieties by $\mathcal{M}_{n, \lambda}$.

TVric combinatorics

First, we are interested in studying the toric varieties $\mathcal{M}_{n, d}$ and $\mathcal{M}_{n, \lambda}$.
Familiar examples:
\star For any n, consider the partition $\lambda=\left(1^{d}\right)=(11 \ldots 1)$ of $d<n$. Then $\mathcal{M}_{n,\left(1^{d}\right)}$ is the associated toric variety to the hypersimplex

$$
\Delta(n, d)=\operatorname{conv}\left\{e_{\ell_{1}}+e_{\ell_{2}}+\cdots+e_{\ell_{d}}: 1 \leq \ell_{1}<\ell_{2}<\cdots<\ell_{d} \leq n\right\}
$$

It has dimension $n-1$ in $\mathbb{P}\binom{n}{d}-1$.
\star Consider the partition $\lambda=(n-1, n-2, \ldots, 2,1)$. Then the moment variety $\mathcal{M}_{n, \lambda}$ is the toric variety of the Birkhoff polytope, which lives in $\mathbb{P}^{n!-1}$ and has dimension $(n-1)^{2}$.

TOric results

Theorem (A., Kileel, Sturmfels)

The dimension of the moment variety $\mathcal{M}_{n, d}$ is $\min \left\{n d-1,\binom{n+d-1}{d}-1\right\}$.
Given a partition λ of length n, let let $k_{0} \geq k_{1} \geq \ldots \geq k_{s}$ be multiplicities of the distinct parts in λ. We define

$$
\nu=(\underbrace{s, \ldots, s}_{k_{s}}, \underbrace{s-1 \ldots, s-1}_{k_{s}-1}, \ldots, \underbrace{1, \ldots, 1}_{k_{1}}, \underbrace{0 \ldots, \ldots}_{k_{0}}) .
$$

to be the reduction of λ. Here $s+1$ is the number of distinct parts of λ.
Ex: both $(8,5,5,4)$ and $(7,7,3,0)$ reduce to $\nu=(2,1,0,0)$, with $s=2$.
Ex: if $\lambda=\left(1^{d}\right)$, we recover the identification $\Delta(n, d)$ with $\Delta(n, n-d)$.
Theorem (A., Kileel, Sturmfels)
The moment variety $\mathcal{M}_{n, \lambda}=\mathcal{M}_{n, \nu}$ has dimension ($n-1$)s.

What about generators?

Example

Consider the variety $\mathcal{M}_{4,4}$ in \mathbb{P}^{34}. Its ideal is generated by 52 quadrics and 28 cubics. The subset of the generators which involves the twelve unknowns $m_{2110}, \ldots, m_{0112}$ does not suffice to cut out $\mathcal{M}_{4,(211)}$ in \mathbb{P}^{11}.

Theorem (A., Kileel, Sturmfels)
For any partition λ, the ideal of $\mathcal{M}_{n, \lambda}$ is generated by quadrics and cubics.
The ideals for $\mathcal{M}_{n, d}$ are more complicated. We conjecture that there does not exist a uniform degree bound for their generators.

Mixtures

Now we consider the mixtures of r copies of our toric models. Algebraically, these are the secant varieties $\sigma_{r}\left(\mathcal{M}_{n, d}\right)$ and $\sigma_{r}\left(\mathcal{M}_{n, \lambda}\right)$. The first is parametrized by

$$
m_{i_{1} i_{2} \cdots i_{n}}=\sum_{j=1}^{r} \mu_{1 i_{1}}^{(j)} \mu_{2 i_{2}}^{(j)} \cdots \mu_{n i_{n}}^{(j)} \text { with } i_{1}, i_{2}, \ldots, i_{n} \geq 0 \text { and } i_{1}+i_{2}+\cdots+i_{n}=d
$$

These varieties are no longer toric! What can we say about their dimensions, degrees, generators?
\diamond Consider the secant variety $\sigma_{2}\left(\mathcal{M}_{5,2}\right)$. The parametrization is given as

$$
m_{20000}=\mu_{12}^{(1)}+\mu_{12}^{(2)}, \ldots, \quad m_{11000}=\mu_{11}^{(1)} \mu_{21}^{(1)}+\mu_{11}^{(2)} \mu_{21}^{(2)}, \ldots
$$

Example (continued)

Note $\mathcal{M}_{5,2}=\mathcal{M}_{5,(2)} \star \mathcal{M}_{5,(11)}=\mathbb{P}^{4} \star \mathcal{M}_{5,(11)}$, since

$$
\begin{gathered}
{\left[\begin{array}{lllll}
m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\
m_{12} & m_{22} & m_{23} & m_{24} & m_{25} \\
m_{13} & m_{23} & m_{33} & m_{34} & m_{35} \\
m_{14} & m_{24} & m_{34} & m_{44} & m_{45} \\
m_{15} & m_{25} & m_{35} & m_{45} & m_{55}
\end{array}\right]=\left[\begin{array}{ccccc}
\mu_{12} & \mu_{11} \mu_{21} & \mu_{11} \mu_{31} & \mu_{11} \mu_{41} & \mu_{11} \mu_{51} \\
\mu_{11} \mu_{21} & \mu_{22} & \mu_{21} \mu_{31} & \mu_{21} \mu_{41} & \mu_{21} \mu_{51} \\
\mu_{11} \mu_{31} & \mu_{21} \mu_{31} & \mu_{32} & \mu_{31} \mu_{41} & \mu_{11} \mu_{51} \\
\mu_{11} \mu_{41} & \mu_{21} \mu_{41} & \mu_{31} \mu_{41} & \mu_{42} & \mu_{41} \mu_{51} \\
\mu_{11} \mu_{51} & \mu_{21} \mu_{51} & \mu_{31} \mu_{51} & \mu_{41} \mu_{51} & \mu_{52}
\end{array}\right]} \\
\sigma_{2}\left(\mathcal{M}_{5,2}\right)=\sigma_{2}\left(\mathbb{P}^{4} \star \mathcal{M}_{5,(11)}\right)=\mathbb{P}^{4} \star \sigma_{2}\left(\mathcal{M}_{5,(11)}\right) \subset \mathbb{P}^{4} \star \mathbb{P}^{9}=\mathbb{P}^{14} .
\end{gathered}
$$

The ideal of $\sigma_{2}\left(\mathcal{M}_{5,(11)}\right)$ is principal, generated by the pentad

$$
\begin{aligned}
& m_{12} m_{13} m_{24} m_{35} m_{45}-m_{12} m_{13} m_{25} m_{34} m_{45}-m_{12} m_{14} m_{23} m_{35} m_{45}+m_{12} m_{14} m_{25} m_{34} m_{35} \\
&+ m_{12} m_{15} m_{23} m_{34} m_{45}-m_{12} m_{15} m_{24} m_{34} m_{35}+m_{13} m_{14} m_{23} m_{25} m_{45}-m_{13} m_{14} m_{24} m_{25} m_{35} \\
&-m_{13} m_{15} m_{23} m_{24} m_{45}+m_{13} m_{15} m_{24} m_{25} m_{34}+m_{14} m_{15} m_{23} m_{24} m_{35}-m_{14} m_{15} m_{23} m_{25} m_{34} .
\end{aligned}
$$

This is the factor analysis model $F_{5,2}$.

Dimensions of mixtures

Proposition (A., Kileel, Sturmfels)

The dimension of the moment variety satisfies the upper bound

$$
\begin{equation*}
\operatorname{dim}\left(\sigma_{r}\left(\mathcal{M}_{n, d}\right)\right) \leq \min \left\{r n d-r n+n-1,\binom{n+d-1}{d}-1\right\} \tag{1}
\end{equation*}
$$

Consider $\sigma_{2}\left(\mathcal{M}_{5,3}\right)=\sigma_{2}\left(\mathcal{M}_{5,(3)} \star \widetilde{\mathcal{M}}_{5,3}\right)=\mathbb{P}^{4} \star \sigma_{2}\left(\widetilde{\mathcal{M}}_{5,3}\right)$ in \mathbb{P}^{34}. Note:
\star we know $\operatorname{dim}\left(\widetilde{\mathcal{M}}_{5,3}\right) \leq(5 \cdot 3-5)-1=9$,

* so $\operatorname{dim}\left(\sigma_{2}\left(\mathcal{M}_{5,3}\right)\right) \leq 4+1+(2 \cdot 9+1)=24$.

Theorem (A., Kileel, Sturmfels)

The dimension $\sigma_{r}\left(\mathcal{M}_{n, d}\right)$ is bounded above by the optimal value of

maximize $c_{1}+c_{2}+\cdots+c_{d}-1$	subject to $0 \leq c_{i} \leq n r$ for $i \in[d]$ and $\sum_{i \in S} c_{i} \leq \sum_{\lambda \cap S \neq \varnothing}\left\|N_{\lambda}\right\| \quad$ for $S \subseteq[d]$.

The last sum ranges over partitions $\lambda \vdash d$ of length $\leq n$ having nonempty intersection with S.
Conjecture: this bound is tight for $d \geq 3$!

Implicitization

Solving the implicitization problem is difficult!
Remark: Our initial parametrization is not one-to-one. If ω is a primitive d th root of unity then we can replace $\mu_{k i}$ by $\mu_{k i} \omega^{i}$ without changing $m_{i_{1} i_{2} \ldots i_{n}}$. We parameterize to make degree computations in Julia faster.

Consider the variety $\mathcal{M}_{6,(111)}$. Its ideal is given by the 2×2 minors of
$\left[\begin{array}{ccccccccccccccc}\star & \star & \star & \star & \star & m_{123} & m_{124} & m_{125} & m_{126} & m_{134} & m_{133} & m_{133} & m_{144} & m_{146} & m_{156} \\ \star & m_{123} & m_{124} & m_{125} & m_{126} & \star & \star & \star & \star & m_{23} & m_{23} & m_{236} & m_{245} & m_{246} & m_{256} \\ m_{123} & \star & m_{134} & m_{135} & m_{136} & \star & m_{234} & m_{235} & m_{236} & \star & \star & \star & m_{345} & m_{346} & m_{356} \\ m_{124} & m_{134} & \star & m_{145} & m_{146} & m_{234} & \star & m_{245} & m_{246} & \star & m_{345} & m_{346} & \star & \star & m_{456} \\ m_{125} & m_{135} & m_{145} & \star & m_{156} & m_{235} & m_{245} & \star & m_{256} & m_{345} & \star & m_{356} & \star & m_{456} & \star \\ m_{126} & m_{136} & m_{146} & m_{156} & \star & m_{236} & m_{246} & m_{256} & \star & m_{346} & m_{356} & \star & m_{456} & \star & \star\end{array}\right]$

The ideal of $\sigma_{2}\left(\mathcal{M}_{6,(111)}\right)$ is generated by 20 cubics and 12 quintics. The ideal of $\sigma_{3}\left(\mathcal{M}_{6,(111)}\right)$ has no quadrics or cubics, but contains a unique quartic. Computations in Julia reveal:

$$
\operatorname{deg}\left(\sigma_{2}\left(\mathcal{M}_{6,(111)}\right)\right)=465 \text { and } \operatorname{deg}\left(\sigma_{3}\left(\mathcal{M}_{6,(111)}\right)\right)=80
$$

More implicitization

Proposition (A., Kileel, Sturmfels)

The variety $\sigma_{2}\left(\mathcal{M}_{5,3}\right)$ has dimension 24 and degree 3225 in \mathbb{P}^{34}. Its prime ideal is generated by 313 polynomials, namely 10 cubics, 283 quintics, 10 sextics and 10 septics. These are obtained by elimination from the ideal of 3×3 minors of the 5×15 matrix
$\left[\begin{array}{ccccccccccccccc}a_{23} & a_{24} & a_{25} & a_{34} & a_{35} & a_{45} & \star & \star & \star & \star & \star & b_{21} & b_{31} & b_{41} & b_{51} \\ a_{13} & a_{14} & a_{15} & \star & \star & \star & a_{34} & a_{35} & a_{45} & \star & b_{12} & \star & b_{32} & b_{42} & b_{52} \\ a_{12} & \star & \star & a_{14} & a_{15} & \star & a_{24} & a_{25} & \star & a_{45} & b_{13} & b_{23} & \star & b_{43} & b_{53} \\ \star & a_{12} & \star & a_{13} & \star & a_{15} & a_{23} & \star & a_{25} & a_{35} & b_{14} & b_{24} & b_{34} & \star & b_{54} \\ \star & \star & a_{12} & \star & a_{13} & a_{14} & \star & a_{23} & a_{24} & a_{34} & b_{15} & b_{25} & b_{35} & b_{45} & \star\end{array}\right]$.

Proposition (A., Kileel, Sturmfels)

The variety $\sigma_{2}\left(\mathcal{M}_{4,4}\right)$ has dimension 27 and degree 8650 in \mathbb{P}^{34}. Its prime ideal has only three minimal generators in degrees at most six.

Finiteness up to symmetry

Our ideals satisfy natural inclusions

$$
I\left(\sigma_{r}\left(\mathcal{M}_{n, \bullet}\right)\right) \subset I\left(\sigma_{r}\left(\mathcal{M}_{n+1, \bullet}\right)\right), \quad \text { where } \bullet \in\{d, \lambda\}
$$

by appending a zero to the indices of every coordinate: $m_{i_{1} i_{2} \cdots i_{n}} \mapsto m_{i_{1} i_{2} \ldots i_{n}}$. Iterate these inclusions and let the big symmetric group act:

$$
\left\langle S_{n} I\left(\sigma_{r}\left(\mathcal{M}_{n_{0}, \bullet}\right)\right)\right\rangle \subseteq I\left(\sigma_{r}\left(\mathcal{M}_{n, \bullet}\right)\right) \text { for } n>n_{0}
$$

Ideal-theoretic finiteness means $\exists n_{0}$ such that equality holds for $n>n_{0}$.

Theorem (A., Kileel, Sturmfels)

Given any partition $\lambda \vdash d$ and integer $r \geq 1$, set-theoretic finiteness holds for the varieties $\sigma_{r}\left(\mathcal{M}_{n, d}\right)$ and $\sigma_{r}\left(\mathcal{M}_{n, \lambda}\right)$. Ideal-theoretic finiteness holds in the toric case $r=1$.

Example

The ideal of the variety $\mathcal{M}_{n,\left(1^{d}\right)}$ is generated by quadrics. The indices occurring in each quadratic binomial are 1 in at most $2 d$ of the n coordinates. Therefore, ideal-theoretic finiteness holds with $n_{0}=2 d$. If $\lambda=(11)$, then $n_{0}=4$. Indeed:

$$
\begin{aligned}
I\left(\mathcal{M}_{4, \lambda}\right)=\langle & \left\langle m_{0101} m_{1010}-m_{0110} m_{1001}, m_{0011} m_{1100}-m_{0110} m_{1001}\right\rangle \\
I\left(\mathcal{M}_{5, \lambda}\right)= & \left\langle m_{01001} m_{10100}-m_{01100} m_{10001}, m_{00011} m_{10100}-m_{00110} m_{10001},\right. \\
& m_{11000} m_{00101}-m_{01100} m_{10001}, m_{10010} m_{00101}-m_{00110} m_{10001}, \\
& m_{10010} m_{01100}-m_{10100} m_{01010}, m_{00011} m_{01100}-m_{001010} m_{01010}, \\
& m_{00110} m_{11000}-m_{10100} m_{01010}, m_{00011} m_{11000}-m_{10001} m_{01010}, \\
& \left.m_{01001} m_{10010}-m_{10001} m_{01010}, m_{00110} m_{01001}-m_{00101} m_{01010}\right\rangle
\end{aligned}
$$

Corollary

Fix a partition λ with e nonzero parts, and suppose that n increases. The toric varieties $\mathcal{M}_{n, \lambda}$ satisfy ideal-theoretic finiteness for some $n_{0} \leq 3 e$.

Thanks!

