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Hilbert’s Nullstellensatz

Theorem (Hilbert’s Nullstellensatz)

Let F be an algebraically closed field and I be an ideal in the polynomial

ring F[x1, · · · , xn]. If f ∈ F[x1, · · · , xn] is a polynomial that vanishes over

all common roots of the elements in I , then f k ∈ I for some positive

integer k.
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Hilbert’s Nullstellensatz

Theorem (Hilbert’s Nullstellensatz)

Let F be an algebraically closed field and I be an ideal in the polynomial

ring F[x1, · · · , xn]. If f ∈ F[x1, · · · , xn] is a polynomial that vanishes over

all common roots of the elements in I , then f k ∈ I for some positive

integer k.

Definition

If I is an ideal, define:

√
I = {a : ak ∈ I , k ∈ N

+}.

An ideal I is a radical ideal if
√
I = I
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ring F[x1, · · · , xn]. If f ∈ F[x1, · · · , xn] is a polynomial that vanishes over

all common roots of the elements in I , then f k ∈ I for some positive

integer k.

Hilbert’s Nullstellensatz → Combinatorial Nullstellensatz I

For all i ∈ [n], define a special univariate polynomial gi (xi ).
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all common roots of the elements in I , then f k ∈ I for some positive

integer k.

Hilbert’s Nullstellensatz → Combinatorial Nullstellensatz I

For all i ∈ [n], define a special univariate polynomial gi (xi ).

Take the ideal I to be the ideal generated by the polynomials
g1(x1), · · · , gn(xn).
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Hilbert’s Nullstellensatz

Theorem (Hilbert’s Nullstellensatz)

Let F be an algebraically closed field and I be an ideal in the polynomial

ring F[x1, · · · , xn]. If f ∈ F[x1, · · · , xn] is a polynomial that vanishes over

all common roots of the elements in I , then f k ∈ I for some positive

integer k.

Hilbert’s Nullstellensatz → Combinatorial Nullstellensatz I

For all i ∈ [n], define a special univariate polynomial gi (xi ).

Take the ideal I to be the ideal generated by the polynomials
g1(x1), · · · , gn(xn).

The new ideal I is radical and so f ∈ I .

Moreover, F may not be algebraically closed.
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Combinatorial Nullstellensatz I
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Combinatorial Nullstellensatz I

Theorem (Combinatorial Nullstellensatz I)

Let F be a field and let f = f (x1, · · · , xn) be a polynomial in

F[x1, · · · , xn]. Let A1, · · · ,An be finite non-empty subsets of F and define

gi (xi ) =
∏

a∈Ai
(xi − a). If f (a1, · · · , an) = 0 for all ai ∈ Ai , then there are

polynomials h1, · · · , hn ∈ F[x1, · · · , xn] such that:

f =
n

∑

i=1

higi .
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Combinatorial Nullstellensatz I Proofs

Alon’s original proof is constructive and involves analysis of
polynomial roots.
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Combinatorial Nullstellensatz I Proofs

Alon’s original proof is constructive and involves analysis of
polynomial roots.

Vishnoi’s proof is purely algebraic and uses basic concepts in
commutative algebra.
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Combinatorial Nullstellensatz II
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Combinatorial Nullstellensatz II

Theorem (Combinatorial Nullstellensatz II)

Let F be a field and f = f (x1, · · · , xn) be a polynomial in F[x1, · · · , xn].
For each i ∈ [n], let ti be a non-negative integer, and suppose

deg(f ) =
∑n

i=1 ti . Also, suppose that the coefficient of
∏n

i=1 x
ti
i in f is

non-zero. Then, for all subsets Ai ⊆ F such that |Ai | > ti , i ∈ [n], there
are a1 ∈ A1, · · · , an ∈ An such that f (a1, · · · , an) 6= 0.
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Combinatorial Nullstellensatz II Proofs

Alon’s proof uses the Combinatorial Nullstellensatz I to analyze
polynomial degrees.
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Combinatorial Nullstellensatz II Proofs

Alon’s proof uses the Combinatorial Nullstellensatz I to analyze
polynomial degrees.

Micha lek’s proof is independent of the Combinatorial Nullstellensatz I
and uses induction on deg(f ).
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Generalized Combinatorial Nullstellensatz II

Let F be an arbitrary field and let f ∈ F[x1, · · · , xn] where n ∈ N
+.
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Generalized Combinatorial Nullstellensatz II

Let F be an arbitrary field and let f ∈ F[x1, · · · , xn] where n ∈ N
+.

Define the support of f , denoted by S(f ), to be the set of all
(t1, · · · , tn) ∈ N

n such that the coefficient of x t11 · · · x tnn is non-zero in
f .
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Generalized Combinatorial Nullstellensatz II

Let F be an arbitrary field and let f ∈ F[x1, · · · , xn] where n ∈ N
+.

Define the support of f , denoted by S(f ), to be the set of all
(t1, · · · , tn) ∈ N

n such that the coefficient of x t11 · · · x tnn is non-zero in
f .

Define a natural partial order on the set S(f ) by letting
(t1, · · · , tn) ≤ (s1, · · · , sn) if and only if ti ≤ si for all i ∈ [n].
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Generalized Combinatorial Nullstellensatz II

Theorem ( Lason)

Let F be a field and f ∈ F[x1, · · · , xn]. Let (t1, · · · , tn) ∈ S(f ) be a

maximal element in S(f ). Then, for any subsets Ai ⊆ F such that

|Ai | ≥ ti + 1 for all i ∈ [n], there are a1 ∈ A1, · · · , an ∈ An such that

f (a1, · · · , an) 6= 0.
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Existing Applications
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Cauchy-Davenport Theorem: the “Classical” Application

Definition

For any two subsets A and B of a field F, we define their sum as follows:

A + B = {a + b : a ∈ A, b ∈ B}.
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Cauchy-Davenport Theorem: the “Classical” Application

Definition

For any two subsets A and B of a field F, we define their sum as follows:

A + B = {a + b : a ∈ A, b ∈ B}.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.
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Proof 1 (Idea)

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.
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Proof 1 (Idea)

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 1 (Idea)

By induction on |A|.
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Proof 1 (Idea)

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 1 (Idea)

By induction on |A|.
Uses counting arguments and basic group theory facts.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

We first claim the theorem holds when |A| + |B | > p.
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Proof 2 via Combinatorial Nullstellensatz II

We first claim the theorem holds when |A| + |B | > p.

In this case, A and B have to intersect.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

We first claim the theorem holds when |A| + |B | > p.

In this case, A and B have to intersect.

Let q ∈ Z/pZ be arbitrary.

Note |q − B | = |B |, so q − B and A have to intersect as well.

Then there are some b ∈ B and a ∈ A such that q − b = a.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

We first claim the theorem holds when |A| + |B | > p.

In this case, A and B have to intersect.

Let q ∈ Z/pZ be arbitrary.

Note |q − B | = |B |, so q − B and A have to intersect as well.

Then there are some b ∈ B and a ∈ A such that q − b = a.

Hence, q = a + b ∈ A + B .
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

We first claim the theorem holds when |A| + |B | > p.

In this case, A and B have to intersect.

Let q ∈ Z/pZ be arbitrary.

Note |q − B | = |B |, so q − B and A have to intersect as well.

Then there are some b ∈ B and a ∈ A such that q − b = a.

Hence, q = a + b ∈ A + B .

Since q was arbitrary, A + B = Z/pZ.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

We first claim the theorem holds when |A| + |B | > p.

In this case, A and B have to intersect.

Let q ∈ Z/pZ be arbitrary.

Note |q − B | = |B |, so q − B and A have to intersect as well.

Then there are some b ∈ B and a ∈ A such that q − b = a.

Hence, q = a + b ∈ A + B .

Since q was arbitrary, A + B = Z/pZ.

So, |A + B | = p and the theorem holds.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

So we may assume |A| + |B | ≤ p.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

So we may assume |A| + |B | ≤ p.

Toward a contradiction, suppose the theorem is false.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

So we may assume |A| + |B | ≤ p.

Toward a contradiction, suppose the theorem is false.

Since |A| + |B | − 1 < p, it is the minimum of the two, so
|A + B | < |A| + |B | − 1. Equivalently,

|A + B | ≤ |A| + |B | − 2
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

So we may assume |A| + |B | ≤ p.

Toward a contradiction, suppose the theorem is false.

Since |A| + |B | − 1 < p, it is the minimum of the two, so
|A + B | < |A| + |B | − 1. Equivalently,

|A + B | ≤ |A| + |B | − 2

Then, there exists some C ⊆ Z/pZ such that A + B ⊆ C and
|C | = |A| + |B | − 2.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

Define f (x , y) ∈ Z/pZ[x , y ] as:

f = f (x , y) =
∏

c∈C

(x + y − c).
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

Define f (x , y) ∈ Z/pZ[x , y ] as:

f = f (x , y) =
∏

c∈C

(x + y − c).

Since A + B ⊆ C , we have f (a, b) = 0 for all (a, b) ∈ A× B .
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

Define f (x , y) ∈ Z/pZ[x , y ] as:

f = f (x , y) =
∏

c∈C

(x + y − c).

Since A + B ⊆ C , we have f (a, b) = 0 for all (a, b) ∈ A× B .

Let t1 = |A| − 1 and t2 = |B | − 1.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

Define f (x , y) ∈ Z/pZ[x , y ] as:

f = f (x , y) =
∏

c∈C

(x + y − c).

Since A + B ⊆ C , we have f (a, b) = 0 for all (a, b) ∈ A× B .

Let t1 = |A| − 1 and t2 = |B | − 1. Note:
◮ t1 + t2 = |A| + |B | − 2 = |C | = deg(f ).
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

Define f (x , y) ∈ Z/pZ[x , y ] as:

f = f (x , y) =
∏

c∈C

(x + y − c).

Since A + B ⊆ C , we have f (a, b) = 0 for all (a, b) ∈ A× B .

Let t1 = |A| − 1 and t2 = |B | − 1. Note:
◮ t1 + t2 = |A| + |B | − 2 = |C | = deg(f ).
◮ The coefficient of x t1y t2 in f is

(

|A|+|B|−2
|A|−1

)

, which is non-zero in Z/pZ.
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Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of Z/pZ.
Then:

|A + B | ≥ min{p, |A| + |B | − 1}.

Proof 2 via Combinatorial Nullstellensatz II

Define f (x , y) ∈ Z/pZ[x , y ] as:

f = f (x , y) =
∏

c∈C

(x + y − c).

Since A + B ⊆ C , we have f (a, b) = 0 for all (a, b) ∈ A× B .

Let t1 = |A| − 1 and t2 = |B | − 1. Note:
◮ t1 + t2 = |A| + |B | − 2 = |C | = deg(f ).
◮ The coefficient of x t1y t2 in f is

(

|A|+|B|−2
|A|−1

)

, which is non-zero in Z/pZ.

By the Combinatorial Nullstellensatz II, we get a contradiction.
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Definitions and Notation

For a G = (V ,E ) on n vertices, enumerate its vertices, thus
identifying V = [n].
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identifying V = [n].

To each vertex of v ∈ V (G ), associate a variable xv .
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Definitions and Notation

For a G = (V ,E ) on n vertices, enumerate its vertices, thus
identifying V = [n].

To each vertex of v ∈ V (G ), associate a variable xv .

Define the graph polynomial fG of G as follows:

fG (x1, x2, · · · , xn) =
∏

i<j
{vi ,vj}∈E(G)

(xi − xj).
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Definitions and Notation

Definitions

A vertex coloring of a graph G = (V ,E ) is a map c : V → C where
C is a set of colors.

Yulia Alexandr Combinatorial Nullstellensatz January 2019 21 / 40



Definitions and Notation

Definitions

A vertex coloring of a graph G = (V ,E ) is a map c : V → C where
C is a set of colors.

A proper vertex coloring is a vertex coloring such that c(u) 6= c(v)
whenever {u, v} ∈ E (G ).
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Definitions and Notation

Definitions

A vertex coloring of a graph G = (V ,E ) is a map c : V → C where
C is a set of colors.

A proper vertex coloring is a vertex coloring such that c(u) 6= c(v)
whenever {u, v} ∈ E (G ).

A graph G is k-colorable if there exists a proper coloring of G that
uses k colors or less.
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Example: the Petersen Graph

A proper coloring of the
Petersen Graph:

The Petersen Graph is
3-colorable.

It can be proven that the
Petersen graph is not
2-colorable.
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Graph Coloring

Theorem (Alon)

A graph G = (V ,E ) is not k-colorable if and only if the graph polynomial

fG lies in the ideal generated by {xkv − 1 : v ∈ V }.
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Graph Coloring

Theorem (Alon)

A graph G = (V ,E ) is not k-colorable if and only if the graph polynomial

fG lies in the ideal generated by {xkv − 1 : v ∈ V }.

Proof

Recall the graph polynomial is defined as:

fG (x1, x2, · · · , xn) =
∏

i<j
{vi ,vj}∈E(G)

(xi − xj).
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Graph Coloring

Theorem

A graph G = (V ,E ) is not k-colorable if and only if the graph polynomial

fG lies in the ideal generated by {xkv − 1 : v ∈ V }.

Proof
=⇒ ◮ First, suppose G is not k-colorable.
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Graph Coloring

Theorem

A graph G = (V ,E ) is not k-colorable if and only if the graph polynomial

fG lies in the ideal generated by {xkv − 1 : v ∈ V }.

Proof
=⇒ ◮ First, suppose G is not k-colorable.

◮ Let A be the set of all kth roots of unity.
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Graph Coloring

Theorem

A graph G = (V ,E ) is not k-colorable if and only if the graph polynomial

fG lies in the ideal generated by {xkv − 1 : v ∈ V }.

Proof
=⇒ ◮ First, suppose G is not k-colorable.

◮ Let A be the set of all kth roots of unity.
◮ For each v ∈ V , define

gv (xv ) =
∏

a∈A

(xv − a) = xkv − 1.
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Graph Coloring

Theorem

A graph G = (V ,E ) is not k-colorable if and only if the graph polynomial

fG lies in the ideal generated by {xkv − 1 : v ∈ V }.

Proof
=⇒ ◮ First, suppose G is not k-colorable.

◮ Let A be the set of all kth roots of unity.
◮ For each v ∈ V , define

gv (xv ) =
∏

a∈A

(xv − a) = xkv − 1.

◮ Note that any coloring c of G gives an evaluation of the polynomial fG ,
namely fG (c(x1), · · · , c(xn)).
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Graph Coloring

Theorem

A graph G = (V ,E ) is not k-colorable if and only if the graph polynomial

fG lies in the ideal generated by {xkv − 1 : v ∈ V }.

Proof
=⇒ ◮ First, suppose G is not k-colorable.

◮ Let A be the set of all kth roots of unity.
◮ For each v ∈ V , define

gv (xv ) =
∏

a∈A

(xv − a) = xkv − 1.

◮ Note that any coloring c of G gives an evaluation of the polynomial fG ,
namely fG (c(x1), · · · , c(xn)).

◮ G is not k-colorable, so any coloring of its vertices with the kth roots
of unity has two adjacent vertices sharing the same color.
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=⇒ ◮ First, suppose G is not k-colorable.

◮ Let A be the set of all kth roots of unity.
◮ For each v ∈ V , define

gv (xv ) =
∏

a∈A

(xv − a) = xkv − 1.

◮ Note that any coloring c of G gives an evaluation of the polynomial fG ,
namely fG (c(x1), · · · , c(xn)).

◮ G is not k-colorable, so any coloring of its vertices with the kth roots
of unity has two adjacent vertices sharing the same color.

◮ Then the graph polynomial fG vanishes for any assignment of elements
in An to (x1, · · · , xn).
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Proof
=⇒ ◮ Hence, it vanishes at all common zeros of gv for all v ∈ V.

◮ The result follows from the Combinatorial Nullstellensatz I.

⇐= ◮ Suppose that fG is in the specified ideal.
◮ Then, it is a combination of the polynomials xkv − 1, v ∈ V .
◮ Hence, fG vanishes whenever each xv attains a value that is a kth root

of unity.
◮ Thus, every coloring of fG with the kth roots of unity makes fG vanish.
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Graph Coloring

Theorem

A graph G = (V ,E ) is not k-colorable if and only if the graph polynomial

fG lies in the ideal generated by {xkv − 1 : v ∈ V }.

Proof
=⇒ ◮ Hence, it vanishes at all common zeros of gv for all v ∈ V.

◮ The result follows from the Combinatorial Nullstellensatz I.

⇐= ◮ Suppose that fG is in the specified ideal.
◮ Then, it is a combination of the polynomials xkv − 1, v ∈ V .
◮ Hence, fG vanishes whenever each xv attains a value that is a kth root

of unity.
◮ Thus, every coloring of fG with the kth roots of unity makes fG vanish.
◮ Hence, for any such coloring, there is an edge whose adjacent vertices

are colored the same.
◮ So G is not k-colorable.
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New Applications
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Hypergraph-related Definitions

Definitions
1 A hypergraph H = (V ,E ) is the finite set V (vertices) and a

collection E of non-empty subsets of vertices (hyperedges).
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Definitions
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2 A hypergraph is m-uniform for some positive integer m if each
hyperedge has cardinality m.
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Hypergraph-related Definitions

Definitions
1 A hypergraph H = (V ,E ) is the finite set V (vertices) and a

collection E of non-empty subsets of vertices (hyperedges).

2 A hypergraph is m-uniform for some positive integer m if each
hyperedge has cardinality m.

3 We say that a hypergraph H is k-colorable if there exists a coloring
of its vertices with k or less colors such that no hyperedge is
monochromatic.
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Example of a Hypergraph

v1

v2
v3

v4

v5
v6

v7

Yulia Alexandr Combinatorial Nullstellensatz January 2019 28 / 40



Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the

polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)2 − 9

)

lies in the ideal generated by {x2v − 1 : v ∈ V }.
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A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the

polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)2 − 9

)

lies in the ideal generated by {x2v − 1 : v ∈ V }.

Theorem

An m-uniform hypergraph is not k-colorable if and only if the polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)k −mk

)

lies in the ideal generated by {xkv − 1 : v ∈ V }.
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Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the

polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)2 − 9

)

lies in the ideal generated by {x2v − 1 : v ∈ V }.

Proof
=⇒ ◮ Suppose H is not 2-colorable.

◮ Then, any coloring with the colors in {1,−1} produces a
monochromatic hyperedge.
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lies in the ideal generated by {x2v − 1 : v ∈ V }.

Proof
=⇒ ◮ Suppose H is not 2-colorable.

◮ Then, any coloring with the colors in {1,−1} produces a
monochromatic hyperedge.

◮ So, for any such coloring, there is a hyperedge all three of whose
vertices are colored either 1 or −1.
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Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the

polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)2 − 9

)

lies in the ideal generated by {x2v − 1 : v ∈ V }.

Proof
=⇒ ◮ Suppose H is not 2-colorable.

◮ Then, any coloring with the colors in {1,−1} produces a
monochromatic hyperedge.

◮ So, for any such coloring, there is a hyperedge all three of whose
vertices are colored either 1 or −1.

◮ Hence gH vanishes for any such coloring.
◮ Define gv = (xv − 1)(xv + 1) = x2v − 1 for all v ∈ V .
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Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the

polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)2 − 9

)

lies in the ideal generated by {x2v − 1 : v ∈ V }.

Proof
=⇒ ◮ Suppose H is not 2-colorable.

◮ Then, any coloring with the colors in {1,−1} produces a
monochromatic hyperedge.

◮ So, for any such coloring, there is a hyperedge all three of whose
vertices are colored either 1 or −1.

◮ Hence gH vanishes for any such coloring.
◮ Define gv = (xv − 1)(xv + 1) = x2v − 1 for all v ∈ V .
◮ By the Combinatorial Nullstellensatz I, gH is in the specified ideal.
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Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the
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Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the

polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)2 − 9

)

lies in the ideal generated by {x2v − 1 : v ∈ V }.

Proof
⇐= ◮ Suppose gH is in the specified ideal.

◮ Then it vanishes whenever each xv attains a value in {1,−1}.
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Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the

polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)2 − 9

)

lies in the ideal generated by {x2v − 1 : v ∈ V }.

Proof
⇐= ◮ Suppose gH is in the specified ideal.

◮ Then it vanishes whenever each xv attains a value in {1,−1}.
◮ So, for some edge, we have

(

∑

v∈e

c(xv )
)2

= 9.
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Hypergraph Coloring

Theorem (Alon)
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◮ Then it vanishes whenever each xv attains a value in {1,−1}.
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(

∑

v∈e

c(xv )
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Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph H = (V ,E ) is not 2-colorable if and only if the

polynomial

gH =
∏

e∈E

(

(

∑

v∈e

xv
)2 − 9

)

lies in the ideal generated by {x2v − 1 : v ∈ V }.

Proof
⇐= ◮ Suppose gH is in the specified ideal.

◮ Then it vanishes whenever each xv attains a value in {1,−1}.
◮ So, for some edge, we have

(

∑

v∈e

c(xv )
)2

= 9.

◮ So there is a monochromatic hyperedge in every coloring by {1,−1}.
◮ Therefore, H is not 2-colorable.
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Sudoku

Empty Grid
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Sudoku

4
5 7 9

9 6 1
9 6 4 8

7 9

3 1 2
8 7

2 1 3
Grid with Restrictions
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Sudoku

1 8 9 4 2 6 7 3 5
6 5 2 7 1 3 8 4 9
7 4 3 9 8 5 6 2 1
9 6 4 1 5 7 3 8 2
5 2 7 3 4 8 9 1 6
8 3 1 2 6 9 5 7 4
3 1 5 6 7 2 4 9 8
4 9 6 8 3 1 2 5 7
2 7 8 5 9 4 1 6 3

Completed Puzzle
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Sudoku Graph

We define the Sudoku graph S by associating a vertex to each cell in
the grid and placing an edge between two vertices if and only if they
are in the same row or the same column or the same block.
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Sudoku Graph

We define the Sudoku graph S by associating a vertex to each cell in
the grid and placing an edge between two vertices if and only if they
are in the same row or the same column or the same block.

S has 81 vertices and each cell/row/block is associated to a complete
subgraph on 9 vertices.
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Sudoku Graph

We define the Sudoku graph S by associating a vertex to each cell in
the grid and placing an edge between two vertices if and only if they
are in the same row or the same column or the same block.

S has 81 vertices and each cell/row/block is associated to a complete
subgraph on 9 vertices.

There are 27 such subgraphs in total; denote each of them by Hi ,
where i ∈ [27].
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Sudoku Graph

Restrictions in a puzzle correspond to a partial coloring of vertices in
the Sudoku graph S .
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Sudoku Graph

Restrictions in a puzzle correspond to a partial coloring of vertices in
the Sudoku graph S .

Let SR denote the graph S with the partial vertex coloring that
corresponds to the restrictions, denoted by R , of a given puzzle.
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Sudoku Graph

Restrictions in a puzzle correspond to a partial coloring of vertices in
the Sudoku graph S .

Let SR denote the graph S with the partial vertex coloring that
corresponds to the restrictions, denoted by R , of a given puzzle.

A puzzle with restrictions R has solutions if and only if SR is
9-colorable with the colors in [9].
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Setup

To each vertex v of S , we will associate a variable xv .
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Setup

To each vertex v of S , we will associate a variable xv .

For each i ∈ [27], let:

qi =
∏

v<w
{v ,w}∈E(Hi )

(xv − xw ).
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For each i ∈ [27], let:

qi =
∏

v<w
{v ,w}∈E(Hi )

(xv − xw ).

For each vertex u ∈ V (S) that must be colored ku ∈ [9] by
restrictions, let Hi1 ,Hi2 ,Hi3 be the subgraphs in which u appears.
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For each vertex u ∈ V (S) that must be colored ku ∈ [9] by
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For each of these subgraphs, we modify its polynomial by replacing
the variable xu by the value ku.

Yulia Alexandr Combinatorial Nullstellensatz January 2019 37 / 40



Setup

To each vertex v of S , we will associate a variable xv .

For each i ∈ [27], let:

qi =
∏

v<w
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For each vertex u ∈ V (S) that must be colored ku ∈ [9] by
restrictions, let Hi1 ,Hi2 ,Hi3 be the subgraphs in which u appears.

For each of these subgraphs, we modify its polynomial by replacing
the variable xu by the value ku.

We modify the polynomials repeatedly for all restrictions, keeping all
the changes in previous steps.
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To each vertex v of S , we will associate a variable xv .

For each i ∈ [27], let:

qi =
∏

v<w
{v ,w}∈E(Hi )

(xv − xw ).

For each vertex u ∈ V (S) that must be colored ku ∈ [9] by
restrictions, let Hi1 ,Hi2 ,Hi3 be the subgraphs in which u appears.

For each of these subgraphs, we modify its polynomial by replacing
the variable xu by the value ku.

We modify the polynomials repeatedly for all restrictions, keeping all
the changes in previous steps.

We keep polynomials unchanged if a cell does not have a restriction.
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Setup

To each vertex v of S , we will associate a variable xv .

For each i ∈ [27], let:

qi =
∏

v<w
{v ,w}∈E(Hi )

(xv − xw ).

For each vertex u ∈ V (S) that must be colored ku ∈ [9] by
restrictions, let Hi1 ,Hi2 ,Hi3 be the subgraphs in which u appears.

For each of these subgraphs, we modify its polynomial by replacing
the variable xu by the value ku.

We modify the polynomials repeatedly for all restrictions, keeping all
the changes in previous steps.

We keep polynomials unchanged if a cell does not have a restriction.

After doing so for all vertices, let fi be the new modified polynomials
for all i ∈ [27].
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Theorem

Define

hR =
27
∏

i=1

fi .
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Theorem

Define

hR =
27
∏

i=1

fi .

Pick any bijection between {1, · · · , 9} and the 9th roots of unity.
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Theorem

Define

hR =
27
∏

i=1

fi .

Pick any bijection between {1, · · · , 9} and the 9th roots of unity.

Theorem

SR is not 9-colorable if and only if hR lies in the ideal generated by

{x9v − 1 : v ∈ [81]}.
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Theorem

Define

hR =
27
∏

i=1

fi .

Pick any bijection between {1, · · · , 9} and the 9th roots of unity.

Theorem

SR is not 9-colorable if and only if hR lies in the ideal generated by

{x9v − 1 : v ∈ [81]}.

Proof

Exercise.
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Other Applications

Minimum Bandwidth of a Graph

f -choosability of Graphs

Lucky Labeling
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Questions?
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