Combinatorial Nullstellensatz: Various Proofs, Extensions and Applications

> Yulia Alexandr Advised by: Professor Karen Collins

Wesleyan University, January 2019

Table of Contents

- Hilbert's Nullstellensatz
- 2 Combinatorial Nullstellensatz I
- Combinatorial Nullstellensatz II

Existing Applications

- Cauchy-Davenport Theorem
- Graph Coloring

5 New Applications

- Hypergraph Coloring
- The Sudoku Problem

Image: A math and A

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}[x_1, \dots, x_n]$. If $f \in \mathbb{F}[x_1, \dots, x_n]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^k \in I$ for some positive integer k.

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}[x_1, \dots, x_n]$. If $f \in \mathbb{F}[x_1, \dots, x_n]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^k \in I$ for some positive integer k.

Definition

If *I* is an ideal, define:

$$\sqrt{I} = \{ a : a^k \in I, \ k \in \mathbb{N}^+ \}.$$

An ideal I is a radical ideal if $\sqrt{I} = I$

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}[x_1, \dots, x_n]$. If $f \in \mathbb{F}[x_1, \dots, x_n]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^k \in I$ for some positive integer k.

Hilbert's Nullstellensatz \rightarrow Combinatorial Nullstellensatz I

• For all $i \in [n]$, define a special univariate polynomial $g_i(x_i)$.

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}[x_1, \dots, x_n]$. If $f \in \mathbb{F}[x_1, \dots, x_n]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^k \in I$ for some positive integer k.

Hilbert's Nullstellensatz \rightarrow Combinatorial Nullstellensatz I

- For all $i \in [n]$, define a special univariate polynomial $g_i(x_i)$.
- Take the ideal *I* to be the ideal generated by the polynomials $g_1(x_1), \dots, g_n(x_n)$.

イロト 不得下 イヨト イヨト

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}[x_1, \dots, x_n]$. If $f \in \mathbb{F}[x_1, \dots, x_n]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^k \in I$ for some positive integer k.

Hilbert's Nullstellensatz \rightarrow Combinatorial Nullstellensatz I

- For all $i \in [n]$, define a special univariate polynomial $g_i(x_i)$.
- Take the ideal *I* to be the ideal generated by the polynomials $g_1(x_1), \dots, g_n(x_n)$.
- The new ideal I is radical and so $f \in I$.

イロト 不得下 イヨト イヨト

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}[x_1, \dots, x_n]$. If $f \in \mathbb{F}[x_1, \dots, x_n]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^k \in I$ for some positive integer k.

Hilbert's Nullstellensatz \rightarrow Combinatorial Nullstellensatz I

- For all $i \in [n]$, define a special univariate polynomial $g_i(x_i)$.
- Take the ideal *I* to be the ideal generated by the polynomials $g_1(x_1), \dots, g_n(x_n)$.
- The new ideal I is radical and so $f \in I$.
- Moreover, ${\mathbb F}$ may not be algebraically closed.

(日) (周) (三) (三)

Combinatorial Nullstellensatz I

・ロト ・回ト ・ヨト

Combinatorial Nullstellensatz I

Theorem (Combinatorial Nullstellensatz I)

Let \mathbb{F} be a field and let $f = f(x_1, \dots, x_n)$ be a polynomial in $\mathbb{F}[x_1, \dots, x_n]$. Let A_1, \dots, A_n be finite non-empty subsets of \mathbb{F} and define $g_i(x_i) = \prod_{a \in A_i} (x_i - a)$. If $f(a_1, \dots, a_n) = 0$ for all $a_i \in A_i$, then there are polynomials $h_1, \dots, h_n \in \mathbb{F}[x_1, \dots, x_n]$ such that:

$$f=\sum_{i=1}^n h_i g_i.$$

Combinatorial Nullstellensatz I Proofs

 Alon's original proof is constructive and involves analysis of polynomial roots.

Combinatorial Nullstellensatz I Proofs

- Alon's original proof is constructive and involves analysis of polynomial roots.
- Vishnoi's proof is purely algebraic and uses basic concepts in commutative algebra.

Combinatorial Nullstellensatz II

・ロト ・回ト ・ヨト

Combinatorial Nullstellensatz II

Theorem (Combinatorial Nullstellensatz II)

Let \mathbb{F} be a field and $f = f(x_1, \dots, x_n)$ be a polynomial in $\mathbb{F}[x_1, \dots, x_n]$. For each $i \in [n]$, let t_i be a non-negative integer, and suppose $deg(f) = \sum_{i=1}^{n} t_i$. Also, suppose that the coefficient of $\prod_{i=1}^{n} x_i^{t_i}$ in f is non-zero. Then, for all subsets $A_i \subseteq \mathbb{F}$ such that $|A_i| > t_i$, $i \in [n]$, there are $a_1 \in A_1, \dots, a_n \in A_n$ such that $f(a_1, \dots, a_n) \neq 0$.

Combinatorial Nullstellensatz II Proofs

• Alon's proof uses the Combinatorial Nullstellensatz I to analyze polynomial degrees.

Combinatorial Nullstellensatz II Proofs

- Alon's proof uses the Combinatorial Nullstellensatz I to analyze polynomial degrees.
- Michałek's proof is independent of the Combinatorial Nullstellensatz I and uses induction on deg(f).

• Let \mathbb{F} be an arbitrary field and let $f \in \mathbb{F}[x_1, \cdots, x_n]$ where $n \in \mathbb{N}^+$.

- Let \mathbb{F} be an arbitrary field and let $f \in \mathbb{F}[x_1, \cdots, x_n]$ where $n \in \mathbb{N}^+$.
- Define the **support** of f, denoted by S(f), to be the set of all $(t_1, \dots, t_n) \in \mathbb{N}^n$ such that the coefficient of $x_1^{t_1} \cdots x_n^{t_n}$ is non-zero in f.

- Let \mathbb{F} be an arbitrary field and let $f \in \mathbb{F}[x_1, \cdots, x_n]$ where $n \in \mathbb{N}^+$.
- Define the **support** of f, denoted by S(f), to be the set of all $(t_1, \dots, t_n) \in \mathbb{N}^n$ such that the coefficient of $x_1^{t_1} \cdots x_n^{t_n}$ is non-zero in f.
- Define a natural partial order on the set S(f) by letting $(t_1, \dots, t_n) \leq (s_1, \dots, s_n)$ if and only if $t_i \leq s_i$ for all $i \in [n]$.

Theorem (Lason)

Let \mathbb{F} be a field and $f \in \mathbb{F}[x_1, \dots, x_n]$. Let $(t_1, \dots, t_n) \in S(f)$ be a maximal element in S(f). Then, for any subsets $A_i \subseteq \mathbb{F}$ such that $|A_i| \ge t_i + 1$ for all $i \in [n]$, there are $a_1 \in A_1, \dots, a_n \in A_n$ such that $f(a_1, \dots, a_n) \neq 0$.

Existing Applications

∃ →

Image: A math and A

Cauchy-Davenport Theorem: the "Classical" Application

Definition

For any two subsets A and B of a field \mathbb{F} , we define their sum as follows:

 $A+B=\{a+b:a\in A,b\in B\}.$

Cauchy-Davenport Theorem: the "Classical" Application

Definition

For any two subsets A and B of a field \mathbb{F} , we define their sum as follows:

 $A+B=\{a+b:a\in A,b\in B\}.$

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof 1 (Idea)

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

 $|A + B| \ge \min\{p, |A| + |B| - 1\}.$

A D A D A D A

Proof 1 (Idea)

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof 1 (Idea)

• By induction on |A|.

(人間) トイヨト イヨト

Proof 1 (Idea)

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof 1 (Idea)

- By induction on |A|.
- Uses counting arguments and basic group theory facts.

A D A D A D A

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

 $|A + B| \ge \min\{p, |A| + |B| - 1\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

Proof 2 via Combinatorial Nullstellensatz II

• We first claim the theorem holds when |A| + |B| > p.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

- We first claim the theorem holds when |A| + |B| > p.
- In this case, A and B have to intersect.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

- We first claim the theorem holds when |A| + |B| > p.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z}/p\mathbb{Z}$ be arbitrary.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

- We first claim the theorem holds when |A| + |B| > p.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z}/p\mathbb{Z}$ be arbitrary.
- Note |q B| = |B|, so q B and A have to intersect as well.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

- We first claim the theorem holds when |A| + |B| > p.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z}/p\mathbb{Z}$ be arbitrary.
- Note |q B| = |B|, so q B and A have to intersect as well.
- Then there are some $b \in B$ and $a \in A$ such that q b = a.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

- We first claim the theorem holds when |A| + |B| > p.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z}/p\mathbb{Z}$ be arbitrary.
- Note |q B| = |B|, so q B and A have to intersect as well.
- Then there are some $b \in B$ and $a \in A$ such that q b = a.
- Hence, $q = a + b \in A + B$.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

- We first claim the theorem holds when |A| + |B| > p.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z}/p\mathbb{Z}$ be arbitrary.
- Note |q B| = |B|, so q B and A have to intersect as well.
- Then there are some $b \in B$ and $a \in A$ such that q b = a.
- Hence, $q = a + b \in A + B$.
- Since q was arbitrary, $A + B = \mathbb{Z}/p\mathbb{Z}$.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

- We first claim the theorem holds when |A| + |B| > p.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z}/p\mathbb{Z}$ be arbitrary.
- Note |q B| = |B|, so q B and A have to intersect as well.
- Then there are some $b \in B$ and $a \in A$ such that q b = a.
- Hence, $q = a + b \in A + B$.
- Since q was arbitrary, $A + B = \mathbb{Z}/p\mathbb{Z}$.
- So, |A + B| = p and the theorem holds.
Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

Proof 2 via Combinatorial Nullstellensatz II

• So we may assume $|A| + |B| \le p$.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

```
|A + B| \ge \min\{p, |A| + |B| - 1\}.
```

Proof 2 via Combinatorial Nullstellensatz II

- So we may assume $|A| + |B| \le p$.
- Toward a contradiction, suppose the theorem is false.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

 $|A + B| \ge \min\{p, |A| + |B| - 1\}.$

Proof 2 via Combinatorial Nullstellensatz II

- So we may assume $|A| + |B| \le p$.
- Toward a contradiction, suppose the theorem is false.
- Since |A| + |B| 1 < p, it is the minimum of the two, so |A + B| < |A| + |B| 1. Equivalently,

$$|A+B| \le |A|+|B|-2$$

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

 $|A + B| \ge \min\{p, |A| + |B| - 1\}.$

Proof 2 via Combinatorial Nullstellensatz II

- So we may assume $|A| + |B| \le p$.
- Toward a contradiction, suppose the theorem is false.
- Since |A| + |B| 1 < p, it is the minimum of the two, so |A + B| < |A| + |B| 1. Equivalently,

$$|A+B| \le |A|+|B|-2$$

• Then, there exists some $C \subseteq \mathbb{Z}/p\mathbb{Z}$ such that $A + B \subseteq C$ and |C| = |A| + |B| - 2.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

 $|A + B| \ge \min\{p, |A| + |B| - 1\}.$

Proof 2 via Combinatorial Nullstellensatz II

• Define $f(x, y) \in \mathbb{Z}/p\mathbb{Z}[x, y]$ as:

$$f = f(x, y) = \prod_{c \in C} (x + y - c).$$

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof 2 via Combinatorial Nullstellensatz II

• Define $f(x, y) \in \mathbb{Z}/p\mathbb{Z}[x, y]$ as:

$$f = f(x, y) = \prod_{c \in C} (x + y - c).$$

• Since $A + B \subseteq C$, we have f(a, b) = 0 for all $(a, b) \in A \times B$.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof 2 via Combinatorial Nullstellensatz II

• Define $f(x, y) \in \mathbb{Z}/p\mathbb{Z}[x, y]$ as:

$$f = f(x, y) = \prod_{c \in C} (x + y - c).$$

Since A + B ⊆ C, we have f(a, b) = 0 for all (a, b) ∈ A × B.
Let t₁ = |A| - 1 and t₂ = |B| - 1.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof 2 via Combinatorial Nullstellensatz II

• Define $f(x, y) \in \mathbb{Z}/p\mathbb{Z}[x, y]$ as:

$$f = f(x, y) = \prod_{c \in C} (x + y - c).$$

Since A + B ⊆ C, we have f(a, b) = 0 for all (a, b) ∈ A × B.
Let t₁ = |A| - 1 and t₂ = |B| - 1. Note:
t₁ + t₂ = |A| + |B| - 2 = |C| = deg(f).

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof 2 via Combinatorial Nullstellensatz II

• Define $f(x, y) \in \mathbb{Z}/p\mathbb{Z}[x, y]$ as:

$$f = f(x, y) = \prod_{c \in C} (x + y - c).$$

• Since $A + B \subseteq C$, we have f(a, b) = 0 for all $(a, b) \in A \times B$.

• Let $t_1 = |A| - 1$ and $t_2 = |B| - 1$. Note:

$$t_1 + t_2 = |A| + |B| - 2 = |C| = \deg(f).$$

The coefficient of $x^{t_1}y^{t_2}$ in f is $\binom{|A|+|B|-2}{|A|-1}$, which is non-zero in $\mathbb{Z}/p\mathbb{Z}$.

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z}/p\mathbb{Z}$. Then:

$$|A + B| \ge \min\{p, |A| + |B| - 1\}.$$

Proof 2 via Combinatorial Nullstellensatz II

• Define $f(x, y) \in \mathbb{Z}/p\mathbb{Z}[x, y]$ as:

$$f = f(x, y) = \prod_{c \in C} (x + y - c).$$

• Since $A + B \subseteq C$, we have f(a, b) = 0 for all $(a, b) \in A \times B$.

• Let $t_1 = |A| - 1$ and $t_2 = |B| - 1$. Note:

$$t_1 + t_2 = |A| + |B| - 2 = |C| = \deg(f).$$

The coefficient of $x^{t_1}y^{t_2}$ in f is $\binom{|A|+|B|-2}{|A|-1}$, which is non-zero in $\mathbb{Z}/p\mathbb{Z}$.

ullet By the Combinatorial Nullstellensatz II, we get a contradiction. $_{\Box}$

• For a G = (V, E) on *n* vertices, enumerate its vertices, thus identifying V = [n].

- For a G = (V, E) on *n* vertices, enumerate its vertices, thus identifying V = [n].
- To each vertex of $v \in V(G)$, associate a variable x_v .

- For a G = (V, E) on *n* vertices, enumerate its vertices, thus identifying V = [n].
- To each vertex of $v \in V(G)$, associate a variable x_v .
- Define the graph polynomial f_G of G as follows:

$$f_G(x_1, x_2, \cdots, x_n) = \prod_{\substack{i < j \\ \{v_i, v_j\} \in E(G)}} (x_i - x_j).$$

Definitions

• A vertex coloring of a graph G = (V, E) is a map $c : V \to C$ where

C is a set of colors.

Definitions

- A vertex coloring of a graph G = (V, E) is a map c : V → C where C is a set of colors.
- A proper vertex coloring is a vertex coloring such that c(u) ≠ c(v) whenever {u, v} ∈ E(G).

Definitions

- A vertex coloring of a graph G = (V, E) is a map c : V → C where C is a set of colors.
- A proper vertex coloring is a vertex coloring such that c(u) ≠ c(v) whenever {u, v} ∈ E(G).
- A graph G is k-colorable if there exists a proper coloring of G that uses k colors or less.

Example: the Petersen Graph

- A proper coloring of the Petersen Graph:
- The Petersen Graph is 3-colorable.
- It can be proven that the Petersen graph is not 2-colorable.

Theorem (Alon)

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

Theorem (Alon)

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

Proof

Recall the graph polynomial is defined as:

$$f_G(x_1, x_2, \cdots, x_n) = \prod_{\substack{i < j \\ \{v_i, v_j\} \in E(G)}} (x_i - x_j).$$

N/ 1				
- VIII	10	AVA	nc	
	1 a 1	600		

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

Proof

 \Rightarrow First, suppose G is not k-colorable.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- First, suppose G is not k-colorable.
 - Let A be the set of all kth roots of unity.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- First, suppose G is not k-colorable.
 - Let A be the set of all kth roots of unity.
 - For each $v \in V$, define

$$g_{\nu}(x_{\nu})=\prod_{a\in A}(x_{\nu}-a)=x_{\nu}^{k}-1.$$

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

Proof

- First, suppose G is not k-colorable.
- Let A be the set of all kth roots of unity.
- For each $v \in V$, define

$$g_{\nu}(x_{\nu})=\prod_{a\in A}(x_{\nu}-a)=x_{\nu}^{k}-1.$$

Note that any coloring c of G gives an evaluation of the polynomial f_G , namely $f_G(c(x_1), \dots, c(x_n))$.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- First, suppose G is not k-colorable.
- Let A be the set of all kth roots of unity.
- For each $v \in V$, define

$$g_{\nu}(x_{\nu})=\prod_{a\in A}(x_{\nu}-a)=x_{\nu}^{k}-1.$$

- Note that any coloring c of G gives an evaluation of the polynomial f_G , namely $f_G(c(x_1), \dots, c(x_n))$.
- *G* is not *k*-colorable, so any coloring of its vertices with the *k*th roots of unity has two adjacent vertices sharing the same color.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- First, suppose G is not k-colorable.
- Let A be the set of all kth roots of unity.
- For each $v \in V$, define

$$g_{\nu}(x_{\nu})=\prod_{a\in A}(x_{\nu}-a)=x_{\nu}^{k}-1.$$

- Note that any coloring c of G gives an evaluation of the polynomial f_G , namely $f_G(c(x_1), \dots, c(x_n))$.
- *G* is not *k*-colorable, so any coloring of its vertices with the *k*th roots of unity has two adjacent vertices sharing the same color.
- Then the graph polynomial f_G vanishes for any assignment of elements in A^n to (x_1, \dots, x_n) .

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

Proof

Hence, it vanishes at all common zeros of g_v for all $v \in V$.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- ▶ Hence, it vanishes at all common zeros of g_v for all $v \in V$.
 - The result follows from the Combinatorial Nullstellensatz I.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- ▶ Hence, it vanishes at all common zeros of g_v for all $v \in V$.
 - The result follows from the Combinatorial Nullstellensatz I.
- Suppose that f_G is in the specified ideal.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- ▶ Hence, it vanishes at all common zeros of g_v for all $v \in V$.
 - The result follows from the Combinatorial Nullstellensatz I.
- Suppose that f_G is in the specified ideal.
 - For Then, it is a combination of the polynomials $x_v^k 1$, $v \in V$.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- ▶ Hence, it vanishes at all common zeros of g_v for all $v \in V$.
 - The result follows from the Combinatorial Nullstellensatz I.
- Suppose that f_G is in the specified ideal.
 - For Then, it is a combination of the polynomials $x_v^k 1$, $v \in V$.
 - Hence, f_G vanishes whenever each x_v attains a value that is a *k*th root of unity.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- ▶ Hence, it vanishes at all common zeros of g_v for all $v \in V$.
- The result follows from the Combinatorial Nullstellensatz I.
- Suppose that f_G is in the specified ideal.
 - For Then, it is a combination of the polynomials $x_v^k 1$, $v \in V$.
 - Hence, f_G vanishes whenever each x_v attains a value that is a *k*th root of unity.
 - Thus, every coloring of f_G with the kth roots of unity makes f_G vanish.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- ▶ Hence, it vanishes at all common zeros of g_v for all $v \in V$.
- The result follows from the Combinatorial Nullstellensatz I.

- Suppose that f_G is in the specified ideal.
 - For Then, it is a combination of the polynomials $x_v^k 1$, $v \in V$.
 - Hence, f_G vanishes whenever each x_v attains a value that is a *k*th root of unity.
 - Thus, every coloring of f_G with the kth roots of unity makes f_G vanish.
 - Hence, for any such coloring, there is an edge whose adjacent vertices are colored the same.

Theorem

A graph G = (V, E) is not k-colorable if and only if the graph polynomial f_G lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

- ▶ Hence, it vanishes at all common zeros of g_v for all $v \in V$.
- The result follows from the Combinatorial Nullstellensatz I.

- Suppose that f_G is in the specified ideal.
 - For Then, it is a combination of the polynomials $x_v^k 1$, $v \in V$.
 - Hence, f_G vanishes whenever each x_v attains a value that is a *k*th root of unity.
 - Thus, every coloring of f_G with the kth roots of unity makes f_G vanish.
 - Hence, for any such coloring, there is an edge whose adjacent vertices are colored the same.
 - So G is not k-colorable. □

New Applications

э.

Hypergraph-related Definitions

Definitions

• A hypergraph H = (V, E) is the finite set V (vertices) and a collection E of non-empty subsets of vertices (hyperedges).

Hypergraph-related Definitions

Definitions

- A hypergraph H = (V, E) is the finite set V (vertices) and a collection E of non-empty subsets of vertices (hyperedges).
- A hypergraph is *m*-uniform for some positive integer *m* if each hyperedge has cardinality *m*.
Hypergraph-related Definitions

Definitions

- A hypergraph H = (V, E) is the finite set V (vertices) and a collection E of non-empty subsets of vertices (hyperedges).
- A hypergraph is *m*-uniform for some positive integer *m* if each hyperedge has cardinality *m*.
- We say that a hypergraph H is k-colorable if there exists a coloring of its vertices with k or less colors such that no hyperedge is monochromatic.

Example of a Hypergraph

. ⊒ →

• • • • • • • • • • •

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Theorem

An m-uniform hypergraph is not k-colorable if and only if the polynomial

$$g_H = \prod_{e \in E} \left(\left(\sum_{v \in e} x_v \right)^k - m^k \right)$$

lies in the ideal generated by $\{x_v^k - 1 : v \in V\}$.

Image: A math a math

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

► Suppose *H* is not 2-colorable.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

Suppose H is not 2-colorable.

For Then, any coloring with the colors in $\{1, -1\}$ produces a monochromatic hyperedge.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

- Suppose *H* is not 2-colorable.
- For Then, any coloring with the colors in $\{1, -1\}$ produces a monochromatic hyperedge.
- So, for any such coloring, there is a hyperedge all three of whose vertices are colored either 1 or -1.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

- Suppose *H* is not 2-colorable.
- For Then, any coloring with the colors in $\{1, -1\}$ produces a monochromatic hyperedge.
- ► So, for any such coloring, there is a hyperedge all three of whose vertices are colored either 1 or −1.
- Hence g_H vanishes for any such coloring.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof Suppose *H* is not 2-colorable. Then, any coloring with the colors in {1, −1} produces a monochromatic hyperedge. So, for any such coloring, there is a hyperedge all three of whose vertices are colored either 1 or −1. Hence g_H vanishes for any such coloring. Define g_v = (x_v − 1)(x_v + 1) = x_v² − 1 for all v ∈ V.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof Suppose H is not 2-colorable. Then, any coloring with the colors in {1, −1} produces a monochromatic hyperedge. So, for any such coloring, there is a hyperedge all three of whose vertices are colored either 1 or −1. Hence g_H vanishes for any such coloring. Define g_v = (x_v − 1)(x_v + 1) = x_v² − 1 for all v ∈ V. By the Combinatorial Nullstellensatz I, g_H is in the specified ideal.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

Suppose g_H is in the specified ideal.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

- Suppose g_H is in the specified ideal.
 - Then it vanishes whenever each x_v attains a value in $\{1, -1\}$.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

Suppose g_H is in the specified ideal.

• Then it vanishes whenever each x_v attains a value in $\{1, -1\}$.

So, for some edge, we have

$$\Big(\sum_{\nu\in e}c(x_{\nu})\Big)^2=9.$$

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

Suppose g_H is in the specified ideal.

• Then it vanishes whenever each x_v attains a value in $\{1, -1\}$.

So, for some edge, we have

$$\left(\sum_{\nu\in e}c(x_{\nu})\right)^2=9.$$

So there is a monochromatic hyperedge in every coloring by $\{1, -1\}$.

Theorem (Alon)

A 3-uniform hypergraph H = (V, E) is not 2-colorable if and only if the polynomial

$$g_{H} = \prod_{e \in E} \left(\left(\sum_{v \in e} x_{v} \right)^{2} - 9 \right)$$

lies in the ideal generated by $\{x_v^2 - 1 : v \in V\}$.

Proof

Suppose g_H is in the specified ideal.

• Then it vanishes whenever each x_v attains a value in $\{1, -1\}$.

So, for some edge, we have

$$\left(\sum_{v\in e}c(x_v)\right)^2=9.$$

So there is a monochromatic hyperedge in every coloring by {1,−1}.
 Therefore, *H* is not 2-colorable. □

Yulia Alexandr

Combinatorial Nullstellensatz

Sudoku

Yulia Alexandr

Combinatorial Nullstellensatz

January 2019 32 / 40

E 996

・ロト ・四ト ・ヨト ・ヨト

Sudoku

<ロ> (日) (日) (日) (日) (日)

Sudoku

イロト イ団ト イヨト イヨト

• We define the **Sudoku graph** *S* by associating a vertex to each cell in the grid and placing an edge between two vertices if and only if they are in the same *row* or the same *column* or the same *block*.

- We define the **Sudoku graph** *S* by associating a vertex to each cell in the grid and placing an edge between two vertices if and only if they are in the same *row* or the same *column* or the same *block*.
- *S* has 81 vertices and each cell/row/block is associated to a complete subgraph on 9 vertices.

- We define the **Sudoku graph** *S* by associating a vertex to each cell in the grid and placing an edge between two vertices if and only if they are in the same *row* or the same *column* or the same *block*.
- *S* has 81 vertices and each cell/row/block is associated to a complete subgraph on 9 vertices.
- There are 27 such subgraphs in total; denote each of them by H_i , where $i \in [27]$.

• Restrictions in a puzzle correspond to a partial coloring of vertices in the Sudoku graph *S*.

- Restrictions in a puzzle correspond to a partial coloring of vertices in the Sudoku graph *S*.
- Let S_R denote the graph S with the partial vertex coloring that corresponds to the restrictions, denoted by R, of a given puzzle.

- Restrictions in a puzzle correspond to a partial coloring of vertices in the Sudoku graph *S*.
- Let S_R denote the graph S with the partial vertex coloring that corresponds to the restrictions, denoted by R, of a given puzzle.
- A puzzle with restrictions R has solutions if and only if S_R is 9-colorable with the colors in [9].

• To each vertex v of S, we will associate a variable x_v .

-

• • • • • • • • • • •

- To each vertex v of S, we will associate a variable x_v .
- For each $i \in [27]$, let:

$$q_i = \prod_{\substack{v < w \\ \{v,w\} \in E(H_i)}} (x_v - x_w).$$

< A > < 3

- To each vertex v of S, we will associate a variable x_v .
- For each $i \in [27]$, let:

$$q_i = \prod_{\substack{v < w \\ \{v,w\} \in E(H_i)}} (x_v - x_w).$$

 For each vertex u ∈ V(S) that must be colored k_u ∈ [9] by restrictions, let H_{i1}, H_{i2}, H_{i3} be the subgraphs in which u appears.

- To each vertex v of S, we will associate a variable x_v .
- For each $i \in [27]$, let:

$$q_i = \prod_{\substack{v < w \\ \{v,w\} \in E(H_i)}} (x_v - x_w).$$

- For each vertex u ∈ V(S) that must be colored k_u ∈ [9] by restrictions, let H_{i1}, H_{i2}, H_{i3} be the subgraphs in which u appears.
- For each of these subgraphs, we modify its polynomial by replacing the variable x_u by the value k_u.

- To each vertex v of S, we will associate a variable x_v .
- For each $i \in [27]$, let:

$$q_i = \prod_{\substack{v < w \\ \{v,w\} \in E(H_i)}} (x_v - x_w).$$

- For each vertex u ∈ V(S) that must be colored k_u ∈ [9] by restrictions, let H_{i1}, H_{i2}, H_{i3} be the subgraphs in which u appears.
- For each of these subgraphs, we modify its polynomial by replacing the variable x_u by the value k_u .
- We modify the polynomials repeatedly for all restrictions, keeping all the changes in previous steps.

- To each vertex v of S, we will associate a variable x_v .
- For each $i \in [27]$, let:

$$q_i = \prod_{\substack{v < w \\ \{v,w\} \in E(H_i)}} (x_v - x_w).$$

- For each vertex u ∈ V(S) that must be colored k_u ∈ [9] by restrictions, let H_{i1}, H_{i2}, H_{i3} be the subgraphs in which u appears.
- For each of these subgraphs, we modify its polynomial by replacing the variable x_u by the value k_u .
- We modify the polynomials repeatedly for all restrictions, keeping all the changes in previous steps.
- We keep polynomials unchanged if a cell does not have a restriction.

- To each vertex v of S, we will associate a variable x_v .
- For each $i \in [27]$, let:

$$q_i = \prod_{\substack{v < w \\ \{v,w\} \in E(H_i)}} (x_v - x_w).$$

- For each vertex u ∈ V(S) that must be colored k_u ∈ [9] by restrictions, let H_{i1}, H_{i2}, H_{i3} be the subgraphs in which u appears.
- For each of these subgraphs, we modify its polynomial by replacing the variable x_u by the value k_u .
- We modify the polynomials repeatedly for all restrictions, keeping all the changes in previous steps.
- We keep polynomials unchanged if a cell does not have a restriction.
- After doing so for all vertices, let *f_i* be the new modified polynomials for all *i* ∈ [27].

くほと くほと くほと

• Define

$$h_R = \prod_{i=1}^{27} f_i.$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Define

$$h_R = \prod_{i=1}^{27} f_i.$$

 \bullet Pick any bijection between $\{1,\cdots,9\}$ and the 9th roots of unity.

Image: A match a ma

Define

$$h_R = \prod_{i=1}^{27} f_i.$$

 \bullet Pick any bijection between $\{1,\cdots,9\}$ and the 9th roots of unity.

Theorem

 S_R is not 9-colorable if and only if h_R lies in the ideal generated by $\{x_v^9 - 1 : v \in [81]\}.$

Define

$$h_R = \prod_{i=1}^{27} f_i.$$

 \bullet Pick any bijection between $\{1,\cdots,9\}$ and the 9th roots of unity.

Theorem

 S_R is not 9-colorable if and only if h_R lies in the ideal generated by $\{x_v^9 - 1 : v \in [81]\}.$

Proof

Exercise.

- 4 同 ト 4 ヨ ト 4 ヨ
Other Applications

- Minimum Bandwidth of a Graph
- *f*-choosability of Graphs
- Lucky Labeling

Questions?

・ロン ・四 ・ ・ ヨン ・ ヨン