Combinatorial Nullstellensatz:
 Various Proofs, Extensions and Applications

Yulia Alexandr
Advised by: Professor Karen Collins

Wesleyan University, January 2019

Table of Contents

(1) Hilbert's Nullstellensatz
(2) Combinatorial Nullstellensatz I
(3) Combinatorial Nullstellensatz II
(4) Existing Applications

- Cauchy-Davenport Theorem
- Graph Coloring
(5) New Applications
- Hypergraph Coloring
- The Sudoku Problem

Hilbert's Nullstellensatz

Hilbert's Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. If $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^{k} \in I$ for some positive integer k.

Hilbert's Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. If $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^{k} \in I$ for some positive integer k.

Definition

If I is an ideal, define:

$$
\sqrt{I}=\left\{a: a^{k} \in I, k \in \mathbb{N}^{+}\right\}
$$

An ideal I is a radical ideal if $\sqrt{I}=I$

Hilbert's Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. If $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^{k} \in I$ for some positive integer k.

Hilbert's Nullstellensatz \rightarrow Combinatorial Nullstellensatz I

- For all $i \in[n]$, define a special univariate polynomial $g_{i}\left(x_{i}\right)$.

Hilbert's Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. If $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^{k} \in I$ for some positive integer k.

Hilbert's Nullstellensatz \rightarrow Combinatorial Nullstellensatz I

- For all $i \in[n]$, define a special univariate polynomial $g_{i}\left(x_{i}\right)$.
- Take the ideal $/$ to be the ideal generated by the polynomials $g_{1}\left(x_{1}\right), \cdots, g_{n}\left(x_{n}\right)$.

Hilbert's Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. If $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^{k} \in I$ for some positive integer k.

Hilbert's Nullstellensatz \rightarrow Combinatorial Nullstellensatz I

- For all $i \in[n]$, define a special univariate polynomial $g_{i}\left(x_{i}\right)$.
- Take the ideal $/$ to be the ideal generated by the polynomials $g_{1}\left(x_{1}\right), \cdots, g_{n}\left(x_{n}\right)$.
- The new ideal I is radical and so $f \in I$.

Hilbert's Nullstellensatz

Theorem (Hilbert's Nullstellensatz)

Let \mathbb{F} be an algebraically closed field and I be an ideal in the polynomial ring $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. If $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ is a polynomial that vanishes over all common roots of the elements in I, then $f^{k} \in I$ for some positive integer k.

Hilbert's Nullstellensatz \rightarrow Combinatorial Nullstellensatz I

- For all $i \in[n]$, define a special univariate polynomial $g_{i}\left(x_{i}\right)$.
- Take the ideal $/$ to be the ideal generated by the polynomials $g_{1}\left(x_{1}\right), \cdots, g_{n}\left(x_{n}\right)$.
- The new ideal I is radical and so $f \in I$.
- Moreover, \mathbb{F} may not be algebraically closed.

Combinatorial Nullstellensatz I

Combinatorial Nullstellensatz I

Theorem (Combinatorial Nullstellensatz I)

Let \mathbb{F} be a field and let $f=f\left(x_{1}, \cdots, x_{n}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. Let A_{1}, \cdots, A_{n} be finite non-empty subsets of \mathbb{F} and define $g_{i}\left(x_{i}\right)=\prod_{a \in A_{i}}\left(x_{i}-a\right)$. If $f\left(a_{1}, \cdots, a_{n}\right)=0$ for all $a_{i} \in A_{i}$, then there are polynomials $h_{1}, \cdots, h_{n} \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ such that:

$$
f=\sum_{i=1}^{n} h_{i} g_{i}
$$

Combinatorial Nullstellensatz I Proofs

- Alon's original proof is constructive and involves analysis of polynomial roots.

Combinatorial Nullstellensatz I Proofs

- Alon's original proof is constructive and involves analysis of polynomial roots.
- Vishnoi's proof is purely algebraic and uses basic concepts in commutative algebra.

Combinatorial Nullstellensatz II

Combinatorial Nullstellensatz II

Theorem (Combinatorial Nullstellensatz II)

Let \mathbb{F} be a field and $f=f\left(x_{1}, \cdots, x_{n}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. For each $i \in[n]$, let t_{i} be a non-negative integer, and suppose $\operatorname{deg}(f)=\sum_{i=1}^{n} t_{i}$. Also, suppose that the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in f is non-zero. Then, for all subsets $A_{i} \subseteq \mathbb{F}$ such that $\left|A_{i}\right|>t_{i}, i \in[n]$, there are $a_{1} \in A_{1}, \cdots, a_{n} \in A_{n}$ such that $f\left(a_{1}, \cdots, a_{n}\right) \neq 0$.

Combinatorial Nullstellensatz II Proofs

- Alon's proof uses the Combinatorial Nullstellensatz I to analyze polynomial degrees.

Combinatorial Nullstellensatz II Proofs

- Alon's proof uses the Combinatorial Nullstellensatz I to analyze polynomial degrees.
- Michałek's proof is independent of the Combinatorial Nullstellensatz I and uses induction on $\operatorname{deg}(f)$.

Generalized Combinatorial Nullstellensatz II

- Let \mathbb{F} be an arbitrary field and let $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ where $n \in \mathbb{N}^{+}$.

Generalized Combinatorial Nullstellensatz II

- Let \mathbb{F} be an arbitrary field and let $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ where $n \in \mathbb{N}^{+}$.
- Define the support of f, denoted by $S(f)$, to be the set of all $\left(t_{1}, \cdots, t_{n}\right) \in \mathbb{N}^{n}$ such that the coefficient of $x_{1}^{t_{1}} \cdots x_{n}^{t_{n}}$ is non-zero in f.

Generalized Combinatorial Nullstellensatz II

- Let \mathbb{F} be an arbitrary field and let $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$ where $n \in \mathbb{N}^{+}$.
- Define the support of f, denoted by $S(f)$, to be the set of all $\left(t_{1}, \cdots, t_{n}\right) \in \mathbb{N}^{n}$ such that the coefficient of $x_{1}^{t_{1}} \cdots x_{n}^{t_{n}}$ is non-zero in f.
- Define a natural partial order on the set $S(f)$ by letting $\left(t_{1}, \cdots, t_{n}\right) \leq\left(s_{1}, \cdots, s_{n}\right)$ if and only if $t_{i} \leq s_{i}$ for all $i \in[n]$.

Generalized Combinatorial Nullstellensatz II

Theorem (Łason)

Let \mathbb{F} be a field and $f \in \mathbb{F}\left[x_{1}, \cdots, x_{n}\right]$. Let $\left(t_{1}, \cdots, t_{n}\right) \in S(f)$ be a maximal element in $S(f)$. Then, for any subsets $A_{i} \subseteq \mathbb{F}$ such that $\left|A_{i}\right| \geq t_{i}+1$ for all $i \in[n]$, there are $a_{1} \in A_{1}, \cdots, a_{n} \in A_{n}$ such that $f\left(a_{1}, \cdots, a_{n}\right) \neq 0$.

Existing Applications

Cauchy-Davenport Theorem: the "Classical" Application

Definition

For any two subsets A and B of a field \mathbb{F}, we define their sum as follows:

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

Cauchy-Davenport Theorem: the "Classical" Application

Definition

For any two subsets A and B of a field \mathbb{F}, we define their sum as follows:

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 1 (Idea)

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 1 (Idea)

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 1 (Idea)

- By induction on $|A|$.

Proof 1 (Idea)

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 1 (Idea)

- By induction on $|A|$.
- Uses counting arguments and basic group theory facts.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 2 via Combinatorial Nullstellensatz II

- We first claim the theorem holds when $|A|+|B|>p$.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 2 via Combinatorial Nullstellensatz II

- We first claim the theorem holds when $|A|+|B|>p$.
- In this case, A and B have to intersect.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 2 via Combinatorial Nullstellensatz II

- We first claim the theorem holds when $|A|+|B|>p$.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z} / p \mathbb{Z}$ be arbitrary.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- We first claim the theorem holds when $|A|+|B|>p$.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z} / p \mathbb{Z}$ be arbitrary.
- Note $|q-B|=|B|$, so $q-B$ and A have to intersect as well.

Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 2 via Combinatorial Nullstellensatz II

- We first claim the theorem holds when $|A|+|B|>p$.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z} / p \mathbb{Z}$ be arbitrary.
- Note $|q-B|=|B|$, so $q-B$ and A have to intersect as well.
- Then there are some $b \in B$ and $a \in A$ such that $q-b=a$.

Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- We first claim the theorem holds when $|A|+|B|>p$.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z} / p \mathbb{Z}$ be arbitrary.
- Note $|q-B|=|B|$, so $q-B$ and A have to intersect as well.
- Then there are some $b \in B$ and $a \in A$ such that $q-b=a$.
- Hence, $q=a+b \in A+B$.

Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- We first claim the theorem holds when $|A|+|B|>p$.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z} / p \mathbb{Z}$ be arbitrary.
- Note $|q-B|=|B|$, so $q-B$ and A have to intersect as well.
- Then there are some $b \in B$ and $a \in A$ such that $q-b=a$.
- Hence, $q=a+b \in A+B$.
- Since q was arbitrary, $A+B=\mathbb{Z} / p \mathbb{Z}$.

Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- We first claim the theorem holds when $|A|+|B|>p$.
- In this case, A and B have to intersect.
- Let $q \in \mathbb{Z} / p \mathbb{Z}$ be arbitrary.
- Note $|q-B|=|B|$, so $q-B$ and A have to intersect as well.
- Then there are some $b \in B$ and $a \in A$ such that $q-b=a$.
- Hence, $q=a+b \in A+B$.
- Since q was arbitrary, $A+B=\mathbb{Z} / p \mathbb{Z}$.
- So, $|A+B|=p$ and the theorem holds.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- So we may assume $|A|+|B| \leq p$.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- So we may assume $|A|+|B| \leq p$.
- Toward a contradiction, suppose the theorem is false.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- So we may assume $|A|+|B| \leq p$.
- Toward a contradiction, suppose the theorem is false.
- Since $|A|+|B|-1<p$, it is the minimum of the two, so $|A+B|<|A|+|B|-1$. Equivalently,

$$
|A+B| \leq|A|+|B|-2
$$

Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- So we may assume $|A|+|B| \leq p$.
- Toward a contradiction, suppose the theorem is false.
- Since $|A|+|B|-1<p$, it is the minimum of the two, so $|A+B|<|A|+|B|-1$. Equivalently,

$$
|A+B| \leq|A|+|B|-2
$$

- Then, there exists some $C \subseteq \mathbb{Z} / p \mathbb{Z}$ such that $A+B \subseteq C$ and $|C|=|A|+|B|-2$.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 2 via Combinatorial Nullstellensatz II

- Define $f(x, y) \in \mathbb{Z} / p \mathbb{Z}[x, y]$ as:

$$
f=f(x, y)=\prod_{c \in C}(x+y-c)
$$

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- Define $f(x, y) \in \mathbb{Z} / p \mathbb{Z}[x, y]$ as:

$$
f=f(x, y)=\prod_{c \in C}(x+y-c)
$$

- Since $A+B \subseteq C$, we have $f(a, b)=0$ for all $(a, b) \in A \times B$.

Proof 2

Theorem (Cauchy-Davenport)
Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- Define $f(x, y) \in \mathbb{Z} / p \mathbb{Z}[x, y]$ as:

$$
f=f(x, y)=\prod_{c \in C}(x+y-c)
$$

- Since $A+B \subseteq C$, we have $f(a, b)=0$ for all $(a, b) \in A \times B$.
- Let $t_{1}=|A|-1$ and $t_{2}=|B|-1$.

Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- Define $f(x, y) \in \mathbb{Z} / p \mathbb{Z}[x, y]$ as:

$$
f=f(x, y)=\prod_{c \in C}(x+y-c)
$$

- Since $A+B \subseteq C$, we have $f(a, b)=0$ for all $(a, b) \in A \times B$.
- Let $t_{1}=|A|-1$ and $t_{2}=|B|-1$. Note:

$$
t_{1}+t_{2}=|A|+|B|-2=|C|=\operatorname{deg}(f) .
$$

Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Proof 2 via Combinatorial Nullstellensatz II

- Define $f(x, y) \in \mathbb{Z} / p \mathbb{Z}[x, y]$ as:

$$
f=f(x, y)=\prod_{c \in C}(x+y-c)
$$

- Since $A+B \subseteq C$, we have $f(a, b)=0$ for all $(a, b) \in A \times B$.
- Let $t_{1}=|A|-1$ and $t_{2}=|B|-1$. Note:

$$
t_{1}+t_{2}=|A|+|B|-2=|C|=\operatorname{deg}(f) .
$$

The coefficient of $x^{t_{1}} y^{t_{2}}$ in f is $\binom{|A|+|B|-2}{|A|-1}$, which is non-zero in $\mathbb{Z} / p \mathbb{Z}$.

Proof 2

Theorem (Cauchy-Davenport)

Let p be a prime and let A and B be two non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$. Then:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

Proof 2 via Combinatorial Nullstellensatz II

- Define $f(x, y) \in \mathbb{Z} / p \mathbb{Z}[x, y]$ as:

$$
f=f(x, y)=\prod_{c \in C}(x+y-c)
$$

- Since $A+B \subseteq C$, we have $f(a, b)=0$ for all $(a, b) \in A \times B$.
- Let $t_{1}=|A|-1$ and $t_{2}=|B|-1$. Note:

$$
t_{1}+t_{2}=|A|+|B|-2=|C|=\operatorname{deg}(f) .
$$

The coefficient of $x^{t_{1}} y^{t_{2}}$ in f is $\binom{|A|+|B|-2}{|A|-1}$, which is non-zero in $\mathbb{Z} / p \mathbb{Z}$.

- By the Combinatorial Nullstellensatz II, we get a contradiction.

Definitions and Notation

- For a $G=(V, E)$ on n vertices, enumerate its vertices, thus identifying $V=[n]$.

Definitions and Notation

- For a $G=(V, E)$ on n vertices, enumerate its vertices, thus identifying $V=[n]$.
- To each vertex of $v \in V(G)$, associate a variable x_{v}.

Definitions and Notation

- For a $G=(V, E)$ on n vertices, enumerate its vertices, thus identifying $V=[n]$.
- To each vertex of $v \in V(G)$, associate a variable x_{v}.
- Define the graph polynomial f_{G} of G as follows:

$$
f_{G}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{\substack{i<j \\\left\{v_{i}, v_{j}\right\} \in E(G)}}\left(x_{i}-x_{j}\right) .
$$

Definitions and Notation

Definitions

- A vertex coloring of a graph $G=(V, E)$ is a map $c: V \rightarrow C$ where C is a set of colors.

Definitions and Notation

Definitions

- A vertex coloring of a graph $G=(V, E)$ is a map $c: V \rightarrow C$ where C is a set of colors.
- A proper vertex coloring is a vertex coloring such that $c(u) \neq c(v)$ whenever $\{u, v\} \in E(G)$.

Definitions and Notation

Definitions

- A vertex coloring of a graph $G=(V, E)$ is a map $c: V \rightarrow C$ where C is a set of colors.
- A proper vertex coloring is a vertex coloring such that $c(u) \neq c(v)$ whenever $\{u, v\} \in E(G)$.
- A graph G is k-colorable if there exists a proper coloring of G that uses k colors or less.

Example: the Petersen Graph

- A proper coloring of the Petersen Graph:
- The Petersen Graph is 3-colorable.
- It can be proven that the Petersen graph is not 2-colorable.

Graph Coloring

Theorem (Alon)
A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Graph Coloring

Theorem (Alon)

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

Recall the graph polynomial is defined as:

$$
f_{G}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{\substack{i<j \\\left\{v_{i}, v_{j}\right\} \in E(G)}}\left(x_{i}-x_{j}\right) .
$$

Graph Coloring

Theorem
A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

First, suppose G is not k-colorable.

Graph Coloring

Theorem
A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

First, suppose G is not k-colorable.
Let A be the set of all k th roots of unity.

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

First, suppose G is not k-colorable.
Let A be the set of all k th roots of unity.
For each $v \in V$, define

$$
g_{v}\left(x_{v}\right)=\prod_{a \in A}\left(x_{v}-a\right)=x_{v}^{k}-1
$$

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

First, suppose G is not k-colorable.
Let A be the set of all k th roots of unity.
For each $v \in V$, define

$$
g_{v}\left(x_{v}\right)=\prod_{a \in A}\left(x_{v}-a\right)=x_{v}^{k}-1
$$

Note that any coloring c of G gives an evaluation of the polynomial f_{G}, namely $f_{G}\left(c\left(x_{1}\right), \cdots, c\left(x_{n}\right)\right)$.

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

\qquad First, suppose G is not k-colorable.
Let A be the set of all k th roots of unity.
For each $v \in V$, define

$$
g_{v}\left(x_{v}\right)=\prod_{a \in A}\left(x_{v}-a\right)=x_{v}^{k}-1
$$

Note that any coloring c of G gives an evaluation of the polynomial f_{G}, namely $f_{G}\left(c\left(x_{1}\right), \cdots, c\left(x_{n}\right)\right)$.
G is not k-colorable, so any coloring of its vertices with the k th roots of unity has two adjacent vertices sharing the same color.

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ First, suppose G is not k-colorable.
Let A be the set of all k th roots of unity.
For each $v \in V$, define

$$
g_{v}\left(x_{v}\right)=\prod_{a \in A}\left(x_{v}-a\right)=x_{v}^{k}-1
$$

Note that any coloring c of G gives an evaluation of the polynomial f_{G}, namely $f_{G}\left(c\left(x_{1}\right), \cdots, c\left(x_{n}\right)\right)$.
G is not k-colorable, so any coloring of its vertices with the k th roots of unity has two adjacent vertices sharing the same color.
Then the graph polynomial f_{G} vanishes for any assignment of elements in A^{n} to $\left(x_{1}, \cdots, x_{n}\right)$.

Graph Coloring

Theorem
A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Hence, it vanishes at all common zeros of g_{v} for all $v \in \mathrm{~V}$.

Graph Coloring

Theorem
A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Hence, it vanishes at all common zeros of g_{v} for all $v \in \mathrm{~V}$. The result follows from the Combinatorial Nullstellensatz I.

Graph Coloring

Theorem
A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Hence, it vanishes at all common zeros of g_{v} for all $v \in \mathrm{~V}$. The result follows from the Combinatorial Nullstellensatz I.

Suppose that f_{G} is in the specified ideal.

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Hence, it vanishes at all common zeros of g_{v} for all $v \in \mathrm{~V}$. The result follows from the Combinatorial Nullstellensatz I.

Suppose that f_{G} is in the specified ideal.
Then, it is a combination of the polynomials $x_{v}^{k}-1, v \in V$.

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Hence, it vanishes at all common zeros of g_{v} for all $v \in \mathrm{~V}$. The result follows from the Combinatorial Nullstellensatz I.

Suppose that f_{G} is in the specified ideal.
Then, it is a combination of the polynomials $x_{v}^{k}-1, v \in V$.
Hence, f_{G} vanishes whenever each x_{v} attains a value that is a k th root of unity.

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Hence, it vanishes at all common zeros of g_{v} for all $v \in \mathrm{~V}$.
The result follows from the Combinatorial Nullstellensatz I.

Suppose that f_{G} is in the specified ideal.
Then, it is a combination of the polynomials $x_{v}^{k}-1, v \in V$.
Hence, f_{G} vanishes whenever each x_{v} attains a value that is a k th root of unity.
Thus, every coloring of f_{G} with the k th roots of unity makes f_{G} vanish.

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Hence, it vanishes at all common zeros of g_{v} for all $v \in \mathrm{~V}$.
The result follows from the Combinatorial Nullstellensatz I.

Suppose that f_{G} is in the specified ideal.
Then, it is a combination of the polynomials $x_{v}^{k}-1, v \in V$.
Hence, f_{G} vanishes whenever each x_{v} attains a value that is a k th root of unity.
Thus, every coloring of f_{G} with the k th roots of unity makes f_{G} vanish. Hence, for any such coloring, there is an edge whose adjacent vertices are colored the same.

Graph Coloring

Theorem

A graph $G=(V, E)$ is not k-colorable if and only if the graph polynomial f_{G} lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Hence, it vanishes at all common zeros of g_{v} for all $v \in \mathrm{~V}$.
The result follows from the Combinatorial Nullstellensatz I.

Suppose that f_{G} is in the specified ideal.
Then, it is a combination of the polynomials $x_{v}^{k}-1, v \in V$.
Hence, f_{G} vanishes whenever each x_{v} attains a value that is a k th root of unity.
Thus, every coloring of f_{G} with the k th roots of unity makes f_{G} vanish. Hence, for any such coloring, there is an edge whose adjacent vertices are colored the same.
So G is not k-colorable. \square

New Applications

Hypergraph-related Definitions

Definitions

(1) A hypergraph $H=(V, E)$ is the finite set V (vertices) and a collection E of non-empty subsets of vertices (hyperedges).

Hypergraph-related Definitions

Definitions

(1) A hypergraph $H=(V, E)$ is the finite set V (vertices) and a collection E of non-empty subsets of vertices (hyperedges).
(2) A hypergraph is m-uniform for some positive integer m if each hyperedge has cardinality m.

Hypergraph-related Definitions

Definitions

(1) A hypergraph $H=(V, E)$ is the finite set V (vertices) and a collection E of non-empty subsets of vertices (hyperedges).
(2) A hypergraph is m-uniform for some positive integer m if each hyperedge has cardinality m.
(3) We say that a hypergraph H is k-colorable if there exists a coloring of its vertices with k or less colors such that no hyperedge is monochromatic.

Example of a Hypergraph

Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Theorem

An m-uniform hypergraph is not k-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{k}-m^{k}\right)
$$

lies in the ideal generated by $\left\{x_{v}^{k}-1: v \in V\right\}$.

Hypergraph Coloring

Theorem (Alon)
A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Hypergraph Coloring

Theorem (Alon)
A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Suppose H is not 2-colorable.

Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

Suppose H is not 2-colorable.
Then, any coloring with the colors in $\{1,-1\}$ produces a monochromatic hyperedge.

Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Suppose H is not 2-colorable.
Then, any coloring with the colors in $\{1,-1\}$ produces a monochromatic hyperedge.
So, for any such coloring, there is a hyperedge all three of whose vertices are colored either 1 or -1 .

Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Suppose H is not 2-colorable.
Then, any coloring with the colors in $\{1,-1\}$ produces a monochromatic hyperedge.

- So, for any such coloring, there is a hyperedge all three of whose vertices are colored either 1 or -1 .
Hence g_{H} vanishes for any such coloring.

Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Suppose H is not 2-colorable.
Then, any coloring with the colors in $\{1,-1\}$ produces a monochromatic hyperedge.
So, for any such coloring, there is a hyperedge all three of whose vertices are colored either 1 or -1 .
Hence g_{H} vanishes for any such coloring.
Define $g_{v}=\left(x_{v}-1\right)\left(x_{v}+1\right)=x_{v}^{2}-1$ for all $v \in V$.

Hypergraph Coloring

Theorem (Alon)

A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

$\Longrightarrow \quad$ Suppose H is not 2-colorable.
Then, any coloring with the colors in $\{1,-1\}$ produces a monochromatic hyperedge.
So, for any such coloring, there is a hyperedge all three of whose vertices are colored either 1 or -1 .
Hence g_{H} vanishes for any such coloring.
Define $g_{v}=\left(x_{v}-1\right)\left(x_{v}+1\right)=x_{v}^{2}-1$ for all $v \in V$.
By the Combinatorial Nullstellensatz I, g_{H} is in the specified ideal.

Hypergraph Coloring

Theorem (Alon)
A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

$$
\text { Suppose } g_{H} \text { is in the specified ideal. }
$$

Hypergraph Coloring

Theorem (Alon)
A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

\LongleftarrowSuppose g_{H} is in the specified ideal.
Then it vanishes whenever each x_{v} attains a value in $\{1,-1\}$.

Hypergraph Coloring

Theorem (Alon)
A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

\Longleftarrow

- Suppose g_{H} is in the specified ideal.
- Then it vanishes whenever each x_{v} attains a value in $\{1,-1\}$. So, for some edge, we have

$$
\left(\sum_{v \in e} c\left(x_{v}\right)\right)^{2}=9
$$

Hypergraph Coloring

Theorem (Alon)
A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

\Longleftarrow
Suppose g_{H} is in the specified ideal.
Then it vanishes whenever each x_{v} attains a value in $\{1,-1\}$.
So, for some edge, we have

$$
\left(\sum_{v \in e} c\left(x_{v}\right)\right)^{2}=9
$$

So there is a monochromatic hyperedge in every coloring by $\{1,-1\}$.

Hypergraph Coloring

Theorem (Alon)
A 3-uniform hypergraph $H=(V, E)$ is not 2-colorable if and only if the polynomial

$$
g_{H}=\prod_{e \in E}\left(\left(\sum_{v \in e} x_{v}\right)^{2}-9\right)
$$

lies in the ideal generated by $\left\{x_{v}^{2}-1: v \in V\right\}$.

Proof

\Longleftarrow
Suppose g_{H} is in the specified ideal.
Then it vanishes whenever each x_{v} attains a value in $\{1,-1\}$.
So, for some edge, we have

$$
\left(\sum_{v \in e} c\left(x_{v}\right)\right)^{2}=9
$$

So there is a monochromatic hyperedge in every coloring by $\{1,-1\}$.
Therefore, H is not 2-colorable.

Sudoku

Sudoku

			4					
	5		7					9
			9		6			1
9	6						8	
					9			
3	1			2				
			8					7
2					1			3

Sudoku

	8	9	4	2	6	7	3	5
6	5	2	7	1	3	8	4	9
7	4	3	9	8	5	6	2	1
9	6	4	1	5	7	3	8	2
5	2	7	3	4	8	9	1	6
8	3	1	2	6	9	5	7	4
3	1	5	6	7	2	4	9	8
4	9	6	8	3	1	2	5	7
2	7			9	4			

Sudoku Graph

- We define the Sudoku graph S by associating a vertex to each cell in the grid and placing an edge between two vertices if and only if they are in the same row or the same column or the same block.

Sudoku Graph

- We define the Sudoku graph S by associating a vertex to each cell in the grid and placing an edge between two vertices if and only if they are in the same row or the same column or the same block.
- S has 81 vertices and each cell/row/block is associated to a complete subgraph on 9 vertices.

Sudoku Graph

- We define the Sudoku graph S by associating a vertex to each cell in the grid and placing an edge between two vertices if and only if they are in the same row or the same column or the same block.
- S has 81 vertices and each cell/row/block is associated to a complete subgraph on 9 vertices.
- There are 27 such subgraphs in total; denote each of them by H_{i}, where $i \in[27]$.

Sudoku Graph

- Restrictions in a puzzle correspond to a partial coloring of vertices in the Sudoku graph S.

Sudoku Graph

- Restrictions in a puzzle correspond to a partial coloring of vertices in the Sudoku graph S.
- Let S_{R} denote the graph S with the partial vertex coloring that corresponds to the restrictions, denoted by R, of a given puzzle.

Sudoku Graph

- Restrictions in a puzzle correspond to a partial coloring of vertices in the Sudoku graph S.
- Let S_{R} denote the graph S with the partial vertex coloring that corresponds to the restrictions, denoted by R, of a given puzzle.
- A puzzle with restrictions R has solutions if and only if S_{R} is 9 -colorable with the colors in [9].

Setup

- To each vertex v of S, we will associate a variable x_{v}.

Setup

- To each vertex v of S, we will associate a variable x_{v}.
- For each $i \in$ [27], let:

$$
q_{i}=\prod_{\substack{v<w \\\{v, w\} \in E\left(H_{i}\right)}}\left(x_{v}-x_{w}\right)
$$

Setup

- To each vertex v of S, we will associate a variable x_{v}.
- For each $i \in[27]$, let:

$$
q_{i}=\prod_{\substack{v<w \\\{v, w\} \in E\left(H_{i}\right)}}\left(x_{v}-x_{w}\right)
$$

- For each vertex $u \in V(S)$ that must be colored $k_{u} \in$ [9] by restrictions, let $H_{i_{1}}, H_{i_{2}}, H_{i_{3}}$ be the subgraphs in which u appears.

Setup

- To each vertex v of S, we will associate a variable x_{v}.
- For each $i \in[27]$, let:

$$
q_{i}=\prod_{\substack{v<w \\\{v, w\} \in E\left(H_{i}\right)}}\left(x_{v}-x_{w}\right)
$$

- For each vertex $u \in V(S)$ that must be colored $k_{u} \in[9]$ by restrictions, let $H_{i_{1}}, H_{i_{2}}, H_{i_{3}}$ be the subgraphs in which u appears.
- For each of these subgraphs, we modify its polynomial by replacing the variable x_{u} by the value k_{u}.

Setup

- To each vertex v of S, we will associate a variable x_{v}.
- For each $i \in[27]$, let:

$$
q_{i}=\prod_{\substack{v<w \\\{v, w\} \in E\left(H_{i}\right)}}\left(x_{v}-x_{w}\right)
$$

- For each vertex $u \in V(S)$ that must be colored $k_{u} \in[9]$ by restrictions, let $H_{i_{1}}, H_{i_{2}}, H_{i_{3}}$ be the subgraphs in which u appears.
- For each of these subgraphs, we modify its polynomial by replacing the variable x_{u} by the value k_{u}.
- We modify the polynomials repeatedly for all restrictions, keeping all the changes in previous steps.

Setup

- To each vertex v of S, we will associate a variable x_{v}.
- For each $i \in$ [27], let:

$$
q_{i}=\prod_{\substack{v<w \\\{v, w\} \in E\left(H_{i}\right)}}\left(x_{v}-x_{w}\right)
$$

- For each vertex $u \in V(S)$ that must be colored $k_{u} \in[9]$ by restrictions, let $H_{i_{1}}, H_{i_{2}}, H_{i_{3}}$ be the subgraphs in which u appears.
- For each of these subgraphs, we modify its polynomial by replacing the variable x_{u} by the value k_{u}.
- We modify the polynomials repeatedly for all restrictions, keeping all the changes in previous steps.
- We keep polynomials unchanged if a cell does not have a restriction.

Setup

- To each vertex v of S, we will associate a variable x_{v}.
- For each $i \in$ [27], let:

$$
q_{i}=\prod_{\substack{v<w \\\{v, w\} \in E\left(H_{i}\right)}}\left(x_{v}-x_{w}\right)
$$

- For each vertex $u \in V(S)$ that must be colored $k_{u} \in[9]$ by restrictions, let $H_{i_{1}}, H_{i_{2}}, H_{i_{3}}$ be the subgraphs in which u appears.
- For each of these subgraphs, we modify its polynomial by replacing the variable x_{u} by the value k_{u}.
- We modify the polynomials repeatedly for all restrictions, keeping all the changes in previous steps.
- We keep polynomials unchanged if a cell does not have a restriction.
- After doing so for all vertices, let f_{i} be the new modified polynomials for all $i \in[27]$.

Theorem

- Define

$$
h_{R}=\prod_{i=1}^{27} f_{i}
$$

Theorem

- Define

$$
h_{R}=\prod_{i=1}^{27} f_{i}
$$

- Pick any bijection between $\{1, \cdots, 9\}$ and the 9 th roots of unity.

Theorem

- Define

$$
h_{R}=\prod_{i=1}^{27} f_{i}
$$

- Pick any bijection between $\{1, \cdots, 9\}$ and the 9 th roots of unity.

Theorem
S_{R} is not 9-colorable if and only if h_{R} lies in the ideal generated by $\left\{x_{v}^{9}-1: v \in[81]\right\}$.

Theorem

- Define

$$
h_{R}=\prod_{i=1}^{27} f_{i}
$$

- Pick any bijection between $\{1, \cdots, 9\}$ and the 9 th roots of unity.

Theorem
S_{R} is not 9-colorable if and only if h_{R} lies in the ideal generated by $\left\{x_{v}^{9}-1: v \in[81]\right\}$.

Proof

Exercise.

Other Applications

- Minimum Bandwidth of a Graph
- f-choosability of Graphs
- Lucky Labeling

Questions?

