
1

Visibility Graphs of Staircase Polygons:
Algorithm for Building Staircase Polygons
from Slope-Ranking Balanced Tableaux

James Abello, Yulia Alexandr

F

Abstract—There exists a relationship between staircase
polygons, persistent graphs, and balanced tableaux [1].
While many aspects of this relationship had been rigor-
ously studied in [1], the problem of recovering a simple
staircase polygon whose visibility graph is isomorphic to
the skeleton of a given slope-ranking balanced tableau
remained open and was previously known to be PSPACE.
In this paper, we demonstrate a deterministic polynomial-
time algorithm for constructing a staircase polygon with
desired properties and prove that certain conditions re-
quired by the algorithm hold for any balanced tableau.

1 INTRODUCTION

First, this paper follows the definitions and
concepts introduced in [1], as this work adds
on to what has already been discovered by J.
Abello, O. Egecioglu and K. Kumar.

It has been shown that visibility graphs
of staircase polygons are persistent. Moreover,
there has been discovered a polynomial-time
algorithm that recovers a representative maxi-
mal chain in the weak Bruhat order from some
given persistent graph [1]. The problem of
recovering a simple staircase polygon whose
visibility graph is isomorphic to the skeleton
of a given slope-ranking balanced tableau Tn

was introduced in [1] and had been open since
then.

• Dr. James Abello is at DIMACS, Rutgers University.
• Yulia Alexandr is at Wesleyan University.

The algorithm we discuss in this paper
starts building from the middle vertex (or
one of the two middle vertices) of a bal-
anced tableau, thus taking advantage of the
unboundedness of construction in both di-
rections, and iteratively constructs visibility
regions where we place new vertices. We also
prove that the algorithm is deterministic and
works for any balanced tableau by showing
that the visibility regions we define are never
empty as long as we preserve relative slope
ranks of farthest seen vertices at every stage
of construction and that it is always possible
to preserve the needed slope ranks.

2 DEFINITIONS

We will denote a slope-ranking balanced
tableau of n points in the plane with

(
n
2

)
en-

tries as Tn. We will denote the skeleton of Tn

by S(Tn). To refer to a particular entry in the
column i and row j, we will write Tij for the
entry in tableau and S(Tn)ij for the entry in its
skeleton.

We assume that the reader is familiar with
the fact that it suffices to look at the core of
a staircase polygon, as it contains example-
specific visibility information. Thus the algo-
rithm we discuss builds the path v1v2...vn
(where v1, v2, ..., vn are the points where the
staircase path changes from a vertical segment



2

to a horizontal one), which automatically im-
plies a particular staircase polygon. We refer
to such v1v2...vn as a visibility path.

When comparing slopes, we say that the
slope of some line m is larger than the slope of
another line k if m is ranked higher than k in
a slope-ranking tableau (i.e. if the slope of m
is more negative than the slope of k).

We define a concave-concave path to be
two concave paths joined by a convex vertex.
Similarly, we define a concave-convex path
to be a concave and a convex paths joined
together.

We define a visibility region to be a region
in the plane defined by lines formed by visible
vertices such that if we place a vertex p any-
where in the region, its visibility (as defined
by S(Tn)) is satisfied with respect to the other
(already placed) vertices in the path. The lines
that form a visibility region at each stage of
construction are defined as follows. Suppose
we want to construct a region for some vertex
p. For each already placed vertex v, we look
at the farthest vertex it sees before p, call it w.
Then we draw the line defined by v and w (or
extend an already existing edge). If p sees v
(i.e. S(Tn)pw ≡ 1), then the region is defined
on the left of vw, and on the right if otherwise.
The intersections of such regions ∀v gives us
the visibility region for p. One can see that,
by the nature of staircase polygon paths, this
procedure makes sure that the visibility of p
is satisfied, as w would be the vertex blocking
p from seeing v if S(Tn)pw ≡ 0 and wouldn’t
prevent p from seeing v if S(Tn)pw ≡ 1, since
it is the farthest vertex v sees before p.

3 THE ALGORITHM

Input: A slope-ranking tableau Tn.
Output: A staircase polygon whose visibil-

ity graph is isomorphic to the skeleton of the
tableau, S(Tn).

We begin building a visibility path from
the middle vertex (or one of the two middle
vertices) of the tableau, v. Then we place its
visibility path neighbors (v − 1) and (v + 1).
If S(Tn)(v−1)(v+1) ≡ 0, then slope((v − 1), v) >
slope(v, (v+1)) and hence the three-vertex sub-
path has a concave shape, since ((v−1), (v+1))

is in the exterior of the visibility path and
hence not in the visibility graph of the poly-
gon. If S(Tn)(v−1)(v+1) ≡ 1, then slope((v −
1), v) < slope(v, (v + 1)) and hence the three-
vertex subpath has a convex shape. We record
the values of the slopes of the edges ((v−1), v)
and (v, (v + 1)). We also record the value of
slope((v − 1), (v + 1)) if (v − 1) sees (v + 1).
We then store the recorded slopes according
to their ranks.

Moving forward, we add vertices itera-
tively two at a time, one at each end of
the existing path. (If there is only one vertex
left, we simply construct its visibility region
separately). We construct the visibility region
for each new vertex using the lines between
the farthest visible vertices we have already
placed at that point in time. As we do this, we
preserve slope ranks of farthest seen vertices
of each vertex at every stage of construction
relative to the slopes we’ve already recorded
up to this iteration. We place each new ver-
tex in its region such that the slope ranks of
the vertex and the already placed vertices it
sees are preserved and record the preserved
slopes. By the way visibility regions are de-
fined, any point in its non-empty visibility
region will satisfy its required visibility. Thus,
this algorithm will recover a visibility path for
any slope-ranking balanced tableau as long
as there are no empty visibility regions and
as long as it is always possible to preserve
relative slope ranks as descried above.

4 EMPTY REGIONS

Clearly, the algorithm described in the pre-
vious section breaks if a visibility region hap-
pens to be empty. However, in this section,
we prove that empty visibility regions are not
possible as long as we preserve relative slope
ranks between each vertex and the farthest
vertex it sees at each stage of construction.
We first prove this for two special cases and
then present two independent proofs for the
general case.

Note that for the special cases, we modify
our algorithm to build a visibility path start-
ing with the first vertex, adding consecutive
vertices one at a time.



3

4.1 Impossibility of Empty Regions for Special
Cases

Lemma 4.1. For a concave-concave path on n
vertices constructed iteratively from vertex 1 to n,
there always exists a non-empty visibility region
for every vertex v as long as slope ranks of far-
thest seen vertices of each vertex preceding v are
preserved at every stage of construction.

Proof. Suppose we have a tableau whose
skeleton is isomorphic to the visibility graph
of some concave-concave path. Let the vertex
numbered k be the convex vertex separating
two concave subpaths of that path. It is easy
to construct the path for the first k vertices.

By definition of concave-concave paths, it
suffices to look at the rectangular subgraph of
the skeleton (all entries below and including
the convex vertex row). Since the visibility
graph of the given tableau is persistent, it must
be the case that the row numbered (k + 1)
has a block of consecutive ones, and all the
entries to the left of this block have to be
zeros. Similarly, by the persistence property,
each of the next rows have blocks of ones that,
if overlap for some one-entries from the above
row, may extend to the left of the block above
or lose some one entries in the right end. If
the one-blocks of two consecutive rows do not
have any overlaps, it must be the case that the
second row consists of only zero entries. This
means that for the vertices (k + 1) through n,
there are paths of consecutive visible vertices
among vertices 1 through k.

Suppose we have built a path 1 to k. Also,
suppose (k + 1) sees all the vertices from (k −
m) to (k−1); 1 < m. By construction, the edges
((k −m − 1), (k −m)) and ((k −m), (k −m +
1)) determine the visibility region for (k + 1):
clearly (k + 1) must be placed in-between the
extensions of the above edges. Placing (k + 1)
in the region preserving slopes and connecting
k and (k + 1) extends the path.

Now we want to show that the region
for k + 2 is never empty. After we place the
point (k + 1) in its region, we will draw the
line p through this point parallel to the edge
((k − m − 1), (k − m)) (Figure 1). ∀v ∈ {(k −
m), (k−m+ 1), ..., (k− 1)}, if v is to the left of

p, (v, (k + 1)) does not intersect the extension
of ((k − m − 1), (k − m)) below; if v is to the
right of p, then it does. The vertices that do not
intersect the extension of ((k−m−1), (k−m))
below may potentially create an empty visibil-
ity region for the next point in the path, if the
new point sees (k − m − 1) and does not see
one or more of points to the left of p.

Case 1: If (k + 2) does not see some of
the vertices on the right of p and sees some
of them, then it must see all the vertices on the
left, since the block of ones has to continue to
the left, by persistence property.

Case 2: If (k + 2) does not see any of the
vertices on the right of p.

Case 2.1: If (k + 2) also does not see any
of the vertices on the left, by persistence prop-
erty, the (k − 2) row of the tableau must have
all zero entries, and we can always find the
region for a vertex that does not see any of the
other vertices.

Case 2.2: If (k + 2) sees all the vertices to
the left of p, there is no contradiction with the
extension of ((k − m − 1), (k − m)), since the
region is defined on the left of all lines.

Case 2.3: If (k + 2) does not see some of
the vertices on the left of p, it has to be a sub-
collection of consecutive vertices on the right
end. If the region is defined on the right of
the lines connecting those vertices and (k+1),
extensions of the edges between (k + 1) and
the points on the left of p visible to (k + 2)
will cross those lines and, since the region
is defined to the left of those extensions, the
region will not be empty.

Case 3: If (k+2) sees all the vertices on the
right of p, it must see all the vertices on the left
of p, and there is no problem.

We shall iteratively do the same with the
remaining vertices in {(k + 1), (k + 2)..., n},
since by the nature of concave-concave paths,
none of the vertices in this set see each other
(except for the pairs of adjacent vertices in the
path) and all of them have the same properties
as (k + 1) and (k + 2).

Lemma 4.2. For a concave-convex path on n
vertices constructed iteratively from vertex 1 to n,



4

Fig. 1: Concave-Concave Path

there always exists a non-empty visibility region
for every vertex v as long as slope ranks of far-
thest seen vertices of each vertex preceding v are
preserved at every stage of construction.

Proof. Let k be the first convex vertex separat-
ing the concave and convex subpaths.

The first observation is that, by persistence
property, every new vertex after the first con-
vex vertex sees at least everything the pre-
vious vertex sees. Moreover, (k + 1) always
sees (k− 1), otherwise k would not be the first
convex vertex. Hence, every row has a block
of consecutive ones starting at the right end
of the tableau rectangle described in the proof
before. With every new row, the block can only
extend to the left, so every previous vertex
sees only a subset (not necessarily proper) of
what the next vertex sees.

So, the region for (k + 1) is formed in the
same way as in the concave-concave case. It is
important to notice that since the second sub-
path is convex, every new vertex (k + l), l > 0
sees a collection of consecutive vertices right
before itself, i.e. up to (k + l − 1).

Then the only way we could potentially get
an empty region for a new point is if (k + l)
sees some v1 and doesn’t see some v2 in the
first subpath, v1 < v2. Yet, this is not possible,
since by construction (k + l) sees a collection
of consecutive entries up to itself.

Fig. 2: Concave-Convex Path

By symmetry with the above cases, empty
visibility regions are also not possible for
convex-convex and convex-concave paths.

4.2 Impossibility of Empty Regions for the Gen-
eral Case
Lemma 4.3. As we construct a path from the
middle of the tableau, iteratively adding one vertex
at each side while preserving slope ranks of edges
between a vertex and its farthest seen vertex at ev-
ery stage, empty visibility regions are not possible
for any new point.

Proof. By Induction on k (the number of lines
constructing the region of the nth vertex).

Base Case:
Suppose we have a polygon P [2, n−1] that

has a non-empty visibility region for 1. If it
has a non-empty region for n, we’re done.
Suppose it doesn’t and the visibility region for
n is empty in this polygon. This means the
intersection of the regions defined by lines that
produce it is empty. For the base case, assume
there are two such lines that contradict each
other.

WLOG, assume that the two contradictory
lines are the lines a (produced by two vertices
p1 and p2) and b (produced by p3 and p4) such
that n sees p3, so the region is on the left of
b and n doesn’t see p1, meaning the region
is on the right of a. Since the region for n is
assumed to be empty, slope(b) > slope(a) and



5

the lines cross before (n − 1). Since the lines
are extensions of (p1, p2) and (p3, p4), we know
that p1 sees p2 and p3 sees p4, and these are the
farthest vertices p1 and p3 see before n.

Case 1: One of the contradictory lines is the
extension of ((n− 2), (n− 1)).

Because the region for n is always formed
by the line formed by n-1 and its preceding
vertex, we can take the extension of ((n −
2), (n− 1)) as one of the lines.

Since the region for n is empty, (p1, p2)
must cross ((n−2), (n−1)) either before (n−2)
or cross the edge between (n− 2) and (n− 1).
However, the first case is not possible, be-
cause then (p3, p4) has to be entirely to the
left of (p1, p2), which contradicts the fact the
farthest vertex p1 sees is p2. In the same way,
the second case is not possible, since then p1
could see (n − 1), which leads to the same
contradiction.

So, p1, p2, (n − 1), (n − 2) are not distinct
points. This means both contradictory lines
come from (n− 2) or (n− 1).

Case 1.1: Let b = (p1, (n− 2)) and
a = ((n− 2), (n− 1)).

Case 1.1.1: slope(b) > slope(a), so the re-
gion is on the left of b and on the right of
a. However, it is not possible, because such
construction is not inversely complete: (n− 2)
doesn’t see n, p1 doesn’t see (n − 1), yet p1
sees n, which contradicts that the graph is
inversely complete.

Case 1.1.2: slope(b) < slope(a). Can’t hap-
pen, because then the farthest p1 would see is
(n− 1).

Case 1.2: Both contradictory lines come
from (n − 1). Let p1 be some point before n
that sees (n− 1), p1 6= (n− 2).

Case 1.2.1: slope((n − 2), (n − 1)) <
slope(p1, (n − 1)). Not possible, since then p1
wouldn’t see (n− 1).

Case 1.2.2: slope((n − 2), (n − 1)) >
slope(p1, (n − 1)). Let b be the extended edge
((n − 2), (n − 1)) and a be the extension of
(p1, (n − 1)). The region is on the left of b and
on the right of a. Then p1 must see (n − 1),
(n−2) must see n, yet p1 must not see n, which
is a contradiction to inverse completeness (by

Fig. 3: Case 1.1.1

which p1 must see n as well, since the two
above lines cross).

Case 2: None of the contradictory lines are
the extension of ((n− 2), (n− 1)).

Let (p1, p2) and (p3, p4) form two lines
forming an empty visibility region. (WLOG,
assume that p1 < p2 < p3 < p4, since the proof
for the other cases is identical).

Case 2.1: slope(p1, p2) > slope(p3, p4).
Since the region is assumed to be empty, it

must be the case that it is defined on the left of
(p1, p2) and on the right of (p3, p4). The vertex
(n−1) must be on the right of both lines, since
neither p1 nor p3 can see it.

If we attempt to produce a balanced
tableau from this construction, it is clear that
Tp1p2 > Tp3p4 . The farthest vertex p1 can see
before n is p2, so all the entries in the column
containing p1 between p1 and n (exclusive)
are zeros in S(Tn), and hence are all less than
Tp1p2 . However, since p1 sees n, Tp1n > Tp1p2 .

Moreover, Tp3n < Tp3p4 < Tp1p2 < Tp1n. Yet,
Tp3n is a mate of Tp1p3 with respect to Tp1n

and and Tp1p3 ≤ Tp1p2 . However, Tp1n > Tp1p2 .
Contradiction. This case is not possible if we
preserve the ranks of slopes of farthest seen
vertices at every stage.

Case 2.2: slope(p1, p2) < slope(p3, p4).
By symmetry. (Consider the vertex 1 in-

stead of n).
Inductive Hypothesis: Suppose there is a

region well-defined (non-empty) constructed
by (k − 1) lines.



6

Fig. 4: Case 2.1

Clearly, any non-empty visibility region is
a convex set, since it is formed by straight
lines.

Add another line defining the region. If the
region is still non-empty, we’re done, since we
can place n in it. Suppose the kth line makes
the region for n empty.

Case 1: The region proposed by the line k
is on the right of k.

Then the region formed by {1, 2, ...k − 1}
must be on the left of k, since it is assumed
to be empty. If all the lines in {1, 2, ...k − 1}
require the region for n to be on the right of
them, then the intersection of this region with
the region proposed by k is not empty. So ∃ a
line m ∈ {1, 2, ...k− 1} such that the region for
n is defined on the left of it. But then m and
k are the 2 contradictory lines described in the
base case. Contradicts the assumption that the
region is empty.

Case 2: The region proposed by the line k is
on the left of k. Empty regions are not possible
by symmetry with the first case.

4.3 Alternative Proof of the Impossibility of
Empty Regions for the General Case
Proof. As described in the algorithm in [1], if
we have a clique balanced tableau, by chang-
ing mates in certain order, we can reverse

some entries in its skeleton from 1 to 0. Clearly,
when we change some 1 to 0 in the skele-
ton (say for some vertex k), we do not have
to preserve its slope rank anymore and the
edges between k and its two path neighbors
are some consecutive slope ranks we have to
preserve (call them x and (x+ 2)).

Clearly, there exists some region for every
vertex in a clique matrix. Now we want to
show that there exists a region for every re-
versible entry. When we reverse the first entry
in a clique matrix, the vertex it is associated
with, k1, becomes a convex vertex (blocking
vertex), k2. So k2 still sees everyone k1 sees.
Assuming there was some region for k1, we
want to show there is also a region for k2.
Since the vertex k1 could see everyone in the
clique matrix, its region was defined to the left
of all the lines formed by preceding vertices.
Since reversing k1 to k2, makes k2 lie on the
left of k1, it has the same region as k2, and
clearly the slope (x + 2) can be preserved in
this region, since (x + 2) > x. Then we know
the rest of convex vertices for which k2 is
a blocking vertex (before the next blocking
vertex) have non-empty visibility regions, by
symmetry with the concave-concave special
case.

For the remaining reversible entries (not
the first one), some reversible v2 still sees
everything v1 sees, but it might now see more.
So if there is a line passing between v1 and
v2 that defines v1 on the right, then v2 would
see the vertex this line emanates from that
v1 doesn’t see. However, since slope ranks
are consecutively preserved ranks, such line
doesn’t exist and again v1 and v2 have the
same region. So every blocking vertex has a
non-empty region and the rest of the vertices
do as well, by symmetry with the concave-
concave example.

5 PRESERVING SLOPE RANKS

Theorem 5.1. It is always possible to preserve
slope ranks of lines connecting a vertex with its
farthest seen vertex as we iteratively place a new
vertex in its visibility region in the algorithm
described above.



7

Proof. By induction on the number of vertices
n.

Base Case: The base case is trivial. Suppose
we have two adjacent vertices 1 and 2 and
want to place 3. Clearly, 3 sees 2. If 3 does not
see 1, we do not have to preserve the slope,
and we’re done. Suppose 3 sees 1. Then the
slope rank of the edge (1, 3) is greater than
that of (1, 2). Also, the region for 3 is defined
to the left of the line defined by 1 and 2. The
slope of a line connecting 1 and any point on
the left of the line satisfies the above condition.
One can also check that the rank of the slope
of the edge (2, 3) is automatically preserved.

Inductive Hypothesis: Suppose we built a
graph on (n − 1) vertices preserving needed
slope ranks and we want to place the nth

vertex.
We want to show that it is possible to

place n in its visibility region such that the
slope ranks of the edges between n and the
vertices it sees are preserved. In the algorithm,
as we move from vertex to vertex, we record
slopes of edges between farthest seen vertices,
according to their ranks. Hence, we can think
of preserving slope ranks for a certain vertex
as restricting its visibility region using slopes
we already recorded, such that the edges be-
tween the new vertex and the vertices it sees
fall ”in the right gaps” between some slopes
we already know. So proving that we are
always able to preserve slope ranks of edges
between n and its visible vertices is equivalent
to showing that the visibility region restricted
as described above is never empty.

By the lemma above, we know there exists
some non-empty region for n. If there exists
a point p in that region such that slope ranks
can be preserved for the edges between this
point and all the vertices n sees, then let p = n
and we’re done. Suppose that this is not the
case, and there exists a point k such that the
slope rank of (k, n) cannot be preserved for
any placement of n in its region. Then there
exist two rays with ranks R and r emanating
from k (representing recorded slopes), such
that r < rank(k, n) < R, and the intersection
of these rays and the region of n is empty.

Case 1: R and r are on the left of the

visibility region for n. Since the area between
the rays and the visibility region are assumed
to be disjoint, ∃ at least one line m defining the
region for n such that m < r.

Suppose r emanates from p1.
Case 1.1: r defines the region for n. Since

r is on the left of the region for n, the region
must be defined on the right of r, otherwise it
would be empty. So p1 doesn’t see n, and we
do not have to preserve the slope rank of this
edge. Same argument applies if R defines the
region for n.

Case 1.2: None of the rays R, r define
the region for n. Yet, R and r were recorded
at some point, so they represent 1-entries in
S(Tn). Since the region for n is formed by
the latest 1-entries before n, R and r are not
the latest 1-entries before n (i.e. each of them
has at least another 1-entry below it which
forms the visibility region for n). By the Local
Maxima Rule, this implies the slope ranks of
all lines forming the region for n are greater
than the slope ranks of both R and r. Yet, this
is a contradiction, since m < r.

Case 2: R and r are on the right of the
visibility region for n.

Case 2.1: R defines the region for n. Then
R is defined by some p1 and p2. The region has
to be defined on the left of the R, otherwise we
would get an empty region for n. Then p1 sees
n, and we have to preserve the rank of (p1, n).
But then (p1, n) > (p1, p2), which contradicts
that rank(p1, n) falls in-between R and r.

Case 2.2: R does not define the region for n.
Then, like in the previous case, it is one of the
1-entries above the 1-entries defining n. But
then (p1, n) has an upper bound rank less than
itself. Contradiction.

6 CONCLUSION

We have presented a deterministic algo-
rithm that recovers a staircase polygon from
a slope-ranking balanced tableau and proved
that certain conditions required by the algo-
rithm always hold. It may be interesting to
find an easier proof of impossibility of empty
regions for the general case; for example, by



8

generalizing the proofs for the special cases
we considered. It may also be interesting to
investigate the optimality of the algorithm
discussed above.

ACKNOWLEDGMENTS

The author would like to acknowledge,
with gratitude, the direction and support of
her research mentor Professor James Abello.
She would also like to thank Patrick Chen, a
participant of DIMACS 2016 REU, whose code
and report she used in her work.

This work was carried out while the author
was participant in the 2017 DIMACS REU
program at Rutgers University, supported by
NSF grant CCF-1559855.

REFERENCES

[1] J. Abello, O. Egecioglu, K. Kumar, ”Vis-
ibility Graphs of Staircase Polygons and the
Weak Bruhat Order I: From Visibility Graphs
to Maximal Chains” , Discrete and Computa-
tional Geometry, Vol. 14, No 3, 1995, pp 331-
358.


